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ON APPROXIMATE SOLUTIONS OF FRACTIONAL

RICCATI DIFFERENTIAL EQUATIONS VIA SUMUDU

DECOMPOSITION METHOD

N. B. MANJARE, H. T. DINDE, S. D. JADHAV

(Received : 13 - 04 - 2022; Revised : 22 - 09- 2023)

Abstract. In this paper, the Sumudu decomposition method is used

to solve nonlinear fractional Riccati di�erential equations, which is an

innovative coupling of two powerful techniques speci�cally Sumudu

transform and Adomian decomposition method. In science and en-

gineering, the progression of set of mathematical models for any ex-

perimental data is developed by using this innovative mixture. An

approximate analytical solution is founded in the form of rapidly con-

vergent Taylor series about the function u0(x). The comparison of

existing results with previous results are presented to show e�ciency

of proposed method and it is plotted graphically.

1. Introduction

Fractional calculus is the �eld of mathematical analysis which is stated

by S. G. Samko et al. [22]. This book described the investigation and ap-

plications of derivatives and integrals of arbitrary (real or complex) order.

The progress of fractional calculus has been continuously discussed in var-

ious �elds of mathematical analysis and it is stimulated by various ideas

and results. Plenty of research articles were published by many mathemati-

cians. K. B. Oldham et al. [14] addressed that the order q of the operator
dq

dxq becomes an arbitrary parameter.

In 1999, I. Podlubny [16] focused on the methods of solution of arbitrary

real order of fractional di�erential equations. In the invention of frac-

tional integro-di�erential equations, S. Behera et al. [4] developed Eu-

ler wavelets method for solving fractional-order linear Voltera-Fredholm

2010 Mathematics Subject Classi�cation: 34A08, 26A33, 49M27, 34A45
Key words and phrases: Fractional Derivatives, Sumudu transform method, Adomian
Polynomials, Decomposition method, Fractional Riccati Di�erential Equations
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integro-di�erential equations with weakly singular kernels. S. S. Ray [19]

presented numerical solution of fractional di�erential equations by using

new wavelet operational matrix of general order. Further, S. S. Ray [20]

introduced a new approach by two-dimensional wavelets operational ma-

trix method for solving variable-order fractional partial integro-di�erential

equations. S. Behera et al. [5] discussed a wavelet-based novel technique for

linear and nonlinear fractional Volterra-Fredholm integro-di�erential equa-

tions. S. Behera et al. [6] applied fractional integral operational matrix for

the reduction of pantograph Volterra delay integro-di�erential equations

into algebraic equations. Moreover, S. Behera et al. [7] proposed wavelet-

based numerical method for linear and nonlinear fractional Volterra integro-

di�erential equations with weakly singular kernels.

In applications, Riccati di�erential equations and its generalizations appear

in the classical problems of the calculus of variations and also used in opti-

mal control and dynamic programming [18]. Particularly, di�erent type of

IVP and BVP on fractional di�erential equations cannot be solved by any

unique method because they don't have exact solutions. Therefore, various

methods have been investigated to solve fractional order Riccati di�erential

equations for approximate solutions. M. G. Sakar et al. [21] used itera-

tive reproducing kernel Hilbert spaces method (IRKHSM) to achieve the

solutions of fractional Riccati di�erential equations. B. Agheli [3] found a

numerical solution for the fractional Riccati di�erential equations of non-

integer order (FRDEs) via trigonometric basic functions, where they suc-

cessfully applied trigonometric transform method (TTM).

In 1993, G. K. Watugala [23] introduced Sumudu integral transform to

solve di�erential equations from control engineering, which easily converts

t-parameter function f(t) into u-parameter function F (u). In 1994, G. Ado-

mian [2] introduced the book on Solving Frontier Problems of Physics: The

Decomposition Method. This book was purposefully designed for quanti-

tative solutions of mathematical models of physics, applied mathematics,

engineering, biomathematics and astrophysics. Motivated by above cited

work, new method called Sumudu decomposition method is used by N. B.

Manjare et al. [12] for solving nonlinear Riccati di�erential equations. In

Sumudu decomposition method, the limiting value of nth term of in�nite
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power series provides �nite value which satis�es the de�nition of conver-

gence of real analysis: u = limn→∞ φn =
∞∑
i=0

ui where, φn =
n−1∑
i=0

ui.

The present research work is compared with the solution of FRDEs with

an iterative reproducing kernel Hilbert spaces method (IRKHSM) [21] and

trigonometric transform method (TTM) [3]. The tabular representation

shows that approximate solutions and exact solution for di�erent values of

α are very close to each other.

The present paper is organised as follows. The �rst section takes literature

review. The second section presents basic de�nitions of fractional calculus,

Sumudu transform and a few properties of Sumudu transform. The third

section depicts analysis of Sumudu Decomposition Method (SDM). The

fourth section describes convergence of Adomian decomposition method.

The �fth section illustrates comparative study of approximate and exact

solution of the FRDEs and �nally the sixth section brie�y concludes sum-

mary of the paper.

2. PRELIMINARIES OF FRACTIONAL CALCULUS

In preliminary part, the basic de�nitions and properties of the fractional

calculus theory and Sumudu transform have been given for understanding

the theme of this research paper. The de�nitions of Riemann-Liouville and

Caputo fractional derivatives are used to complete present research work.

De�nition 2.1. [17] The Riemann-Liouville fractional integral and di�er-

ential operator of order α > 0; for t > 0 is de�ned as

Jαf(t) =
1

Γ(α)

∫ t

0
(t− ξ)α−1f(ξ)dξ, (2.1)

J0f(t) = f(t)and (2.2)

Dαf(t) =
dm

dtm
Im−αf(t),m− 1 < α < m, m ∈ N. (2.3)

De�nition 2.2. [13] The modi�ed Riemann-Liouville derivative is de�ned

as

Dα
xf(x) =

1

Γ(1− α)

d

dx

∫ x

0
(x− ξ)−α(f(ξ)− f(0))dξ,

where x ∈ [0, 1], 0 < α < 1. (2.4)



4 N. B. MANJARE, H. T. DINDE, S. D. JADHAV

The Riemann-Liouville derivative does not help for formation of real-

world phenomenon model with fractional di�erential equations. M. Caputo

overcame this problem. He developed a novel fractional di�erential operator

Dα and applied it in his theory of viscoelasticity [9]. This Caputo derivative

made an impact on historical development of fractional calculus.

De�nition 2.3. [15] The Caputo fractional derivative of f(t) of order α > 0

with t > 0 is de�ned as

Dαf(t) = Jm−αDαf(t) =
1

Γ(m− α)

∫ t

0
(t− ξ)m−α−1f (m)(ξ)dξ,

m− 1 < α ≤ m, m ∈ N, t > 0. (2.5)

De�nition 2.4. [8] The Sumudu transform is de�ned over the set of func-

tions

A = {f(t) : ∃M, τ1, τ2 > 0, f(t) < Me
t
τj , ift ∈ (−1)j × [0,∞)}, (2.6)

which is de�ned through de�nite integral by using the following formula:

F (u) = S[f(t)] =
1

u

∫ ∞

0
e

−t
u f(t)dt, u ∈ (−τ1, τ2) (2.7)

where S is a Sumudu transform operator and M is a positive constant.

The Sumudu transform of elementary functions and its various properties

are mentioned and tabulated in [8]. We introduce some selected properties

of Sumudu transform of elementary functions as follows:

1.S{1} = 1,

2.S{tn} = unΓ(n+ 1), n > 0,

3.S{f(t)± g(t)} = S{f(t)} ± S{g(t)}.

De�nition 2.5. [11] The Sumudu transform of Caputo fractional derivative

is de�ned as follows

S{Dαf(t)} = u−αS{f(t)} −
m−1∑
k=0

u−α+kf (k)(0),m− 1 < α ≤ m. (2.8)

3. ANALYSIS OF THE METHOD [SDM]

In this paper, we will consider a class of Riccati di�erential equation of

the form
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Dαy(t) +R(y) +N(y) = f(t), n− 1 < α ≤ n, (3.1)

with intial condition

yk(0) = yk0 , (3.2)

where R is a linear bounded operator and N is a nonlinear bounded op-

erator, f(t) is a given continuous function and Dαy(t) is the term of the

fractional order derivative.

The Sumudu transform and Adomian polynomials consist Sumudu decom-

position method.

First, we apply Sumudu transform on both sides of Eq. (3.1) to obtain

S{Dαy(t)}+ S{R(y)}+ S{N(y)} = S{f(t)}
By applying de�nition (2.5) and initial condition (3.2), we have

S{y(t)}
uα − C

uα−k + S{R(y)}+ S{N(y)} = S{f(t)}, where C =
n−1∑
k=0

f (k)(0)

S{y(t)} = ukC + uαS{f(t)} − uαS{R(y)} − uαS{N(y)} (3.3)

The standard Sumudu decomposition method de�nes the solution y(t) by

the series

y(t) =

∞∑
n=0

yn(t), (3.4)

and the non-linear term is decomposed as

N(y) =

∞∑
n=0

An, (3.5)

where An i.e. Adomian polynomials of y0, y1, y2, . . . . . . ., yn that are given

by using the relation

An = 1
n!

dn

dλn

[
N

( ∞∑
n=0

λnyn

)]
λ=0

, n = 0, 1, 2, . . .

The �rst few Adomian Polynomials are de�ned by

A0 = N(y0), (3.6)

A1 = y1N
′
(y0), (3.7)

A2 = y2N
′
(y0) +

1

2!
y21N

′′
(y0), (3.8)

A3 = y3N
′
(y0) + y1y2N

′′
(y0) +

1

3!
y31N

′′′
(y0), (3.9)
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and so on. We apply Eq. (3.4) to Eq. (3.5) in Eq. (3.3), we obtain

S

{ ∞∑
n=0

yn

}
= ukC+uαS{f(t)}−uαS

{
R

∞∑
n=0

yn

}
−uαS

{ ∞∑
n=0

An

}
(3.10)

Comparing both side of Eq. (3.10)

S{y0} = ukC + uαS{f(t)}, (3.11)

S{y1} = −uαS{Ry0} − uαS{A0}, (3.12)

S{y2} = −uαS{Ry1} − uαS{A1}, (3.13)

In general, the recursive relation is derived by

S{yn} = −uαS{Ryn−1} − uαS{An−1}, n ≥ 1, (3.14)

Further, we apply inverse Sumudu transform to Eq. (3.11) - Eq. (3.14)

then

y0 = F (t), (3.15)

yn = −S−1[uαS{Ryn−1}+ uαS{An−1}], n ≥ 1. (3.16)

Where F (t) is a function that arises from the source term and prescribed

initial conditions. We treat y0 as an initial approximation which helps to

calculate further approximation.

4. CONVERGENCE OF ADOMIAN DECOMPOSITION

METHOD

K. Abbaoui and Y. Cherruault [1] suggested new ideas for proving the

convergence of decomposition method. G. Adomian [2] investigated a new

technique for solving exactly nonlinear functional equations of various kinds

(algebraic, di�erential, partial di�erential, integral. . . ). In this section, we

prove convergence of the series solution with the help of a new formula giv-

ing the Adomian polynomials. This formula produces the series solution

as a function of the �rst term of the series. We have a simple formula for

calculation of An

An =
∑

α1+α2+···+αn

N (α1)(u0)
uα1−α2
1

(α1 − α2)!
. . . . . .

u
αn−1−αn

n−1

(αn−1 − αn)!

uαn
n

(αn)!
, n ̸= 0.

Theorem 4.1. With the following hypothesis,
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(1) N is C∞ in a neghbourhood of u0 and ||N (n)(u0)|| ≤ M
′
, for any

n (the derivatives of N at u0 are bounded in norm) where N is a

nonlinear operator from a Hilbert space H into H;

(2) ||ui|| ≤ M < 1, i = 1, 2, . . . , where || · || is the norm in the Hilbert

space H; the series

∞∑
n=0

An is absolutely convergent and furthermore,

||An|| ≤
(
exp

(
π
√

2
3n
))

M
′
Mn, n ≥ M,n ≥ M

′

where M > 0 and M
′
> 0 both are �nite numbers.

Theorem 4.2. If N is C∞ and satis�es ||N (n)(u0)|| ≤ M < 1, for any

n ∈ N , then the decompositional series

∞∑
n=0

un is absolutely convergent and

we have ||un+1|| = ||An|| ≤ Mn+1n
√
n
(
exp

(
π
√

2
3n
))

.

Previously Y. Cherruault [10] discussed that the Adomian technique is

equivalent to determining the sequence: Sn = y1 + y2 + · · · + yn, Sn+1 =

N(y0 + Sn), S0 = 0.

Theorem 4.3. N being a contradiction (δ < 1), if we assume that ||Nn −
N || =∈n(n→∞)→ 0, (satis�ed in our case), then the sequence Sn is given by

Sn+1 = Nn(y0+Sn), S0 = 0 converges towards the S solution of N(y0+S) =

S.

Theorem 4.4. (1) For every f ∈ V
′
, there exists y ∈ V such that:

y −N(y) = f where V is a Hilbert space and V
′
its dual.

(2) The sequence yn de�ned by yn+1 = yn − ϱ[N(y0 + yn)], ϱ > 0 is

strongly convergent in V and its limit y is the solution of y = N(y0+

y) for ϱ > 0 well chosen. A �rst consequence is that u = y0+y with

y0 = f is a solution of u = f +N(u).

These convergence theorems are powerful and easy to handle Linear (L)

and Non-linear (N) terms. The series solution is convergent with remarkable

rapidity and successive terms yi are easily computed. In Adomian research

papers, we can see that a very large number of di�cult problems have been

successively solved.
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5. NUMERICAL EXAMPLES

Example 5.1

We consider the Fractional Riccati di�erential equation [21]

Dαy(t)− 2y(t) + y2(t) = 1, 0 < α ≤ 1, 0 < t < 1, (5.1)

subject to initial condition

y(0) = 0, (5.2)

The exact solution when α = 1 is

y(t) = 1 +
√
2 tanh

(√
2t+ 1

2 log
(√

2−1√
2+1

))
.

By using Eq. (3.15) to Eq. (3.16), we can obtain initial approximation and

general iteration formula for the Eq. (5.1) to Eq. (5.2) as

y0(t) =
tα

Γ(α+ 1)
(5.3)

yn+1(t) = S−1[uαS{2yn(t)−An}] (5.4)

Further, we use Adomian polynomials Eq. (3.6) to Eq. (3.8), initial ap-

proximation Eq. (5.3) and (n + 1)th order approximation Eq. (5.4). We

can derive the following successive approximations.

y1(t) =
2t2α

Γ(2α+ 1)
− Γ(2α+ 1)t3α

(Γ(α+ 1))2Γ(3α+ 1)

y2(t) =
4t3α

Γ(3α+ 1)
− [2(Γ(2α+ 1))2 + 4Γ(α+ 1)Γ(3α+ 1)]t4α

(Γ(α+ 1))2Γ(2α+ 1)Γ(4α+ 1)

+
2Γ(2α+ 1)Γ(4α+ 1)t5α

(Γ(α+ 1))3Γ(3α+ 1)Γ(5α+ 1)

=

∫ 1+
√
5

2

1

ln
(
v2 − 1

)
v

dv −
∫ ln

(
1+

√
5

2

)
0

udu− ln 2 ln

(
1 +

√
5

2

)

y3(t) =
8t4α

Γ(4α+ 1)
− 2

[2(Γ(2α+ 1))2 + 4Γ(α+ 1)Γ(3α+ 1)]t5α

(Γ(α+ 1))2Γ(2α+ 1)Γ(5α+ 1)

+4
Γ(2α+ 1)Γ(4α+ 1)t6α

(Γ(α+ 1))3Γ(3α+ 1)Γ(6α+ 1)
− 8

Γ(4α+ 1)t5α

Γ(α+ 1)Γ(3α+ 1)Γ(5α+ 1)

+2
[2(Γ(2α+ 1))2Γ(5α+ 1) + 4Γ(α+ 1)Γ(3α+ 1)Γ(5α+ 1)]t6α

(Γ(α+ 1))3Γ(2α+ 1)Γ(4α+ 1)Γ(6α+ 1)

−4
Γ(2α+ 1)Γ(4α+ 1)Γ(6α+ 1)t7α

(Γ(α+ 1))4Γ(3α+ 1)Γ(5α+ 1)Γ(7α+ 1)
− 4

Γ(4α+ 1)t5α

(Γ(2α+ 1))2Γ(5α+ 1)
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+4
Γ(2α+ 1)Γ(5α+ 1)t6α

(Γ(α+ 1))2Γ(2α+ 1)Γ(3α+ 1)Γ(6α+ 1)
− (Γ(2α+ 1))2Γ(6α+ 1)t7α

(Γ(α+ 1))4(Γ(3α+ 1))2Γ(7α+ 1)
.

.

The convergent series solution is given by

y(t) =

∞∑
n=0

yn(t)

y(t) =
tα

Γ(α+ 1)
+

2t2α

Γ(2α+ 1)
+

[4(Γ(α+ 1))2 − Γ(2α+ 1)]t3α

(Γ(α+ 1))2Γ(3α+ 1)

+
[8(Γ(α+ 1))2Γ(2α+ 1)− 2(Γ(2α+ 1))2 − 4Γ(α+ 1)Γ(3α+ 1)]t4α

(Γ(α+ 1))2Γ(2α+ 1)Γ(4α+ 1)

+
2Γ(2α+ 1)Γ(4α+ 1)t5α

(Γ(α+ 1))3Γ(3α+ 1)Γ(5α+ 1)
−2

[2(Γ(2α+ 1))2 + 4Γ(α+ 1)Γ(3α+ 1)]t5α

(Γ(α+ 1))2Γ(2α+ 1)Γ(5α+ 1)

+4
Γ(2α+ 1)Γ(4α+ 1)t6α

(Γ(α+ 1))3Γ(3α+ 1)Γ(6α+ 1)
− 8

Γ(4α+ 1)t5α

Γ(α+ 1)Γ(3α+ 1)Γ(5α+ 1)

+2
[2(Γ(2α+ 1))2Γ(5α+ 1) + 4Γ(α+ 1)Γ(3α+ 1)Γ(5α+ 1)]t6α

(Γ(α+ 1))3Γ(2α+ 1)Γ(4α+ 1)Γ(6α+ 1)

−4
Γ(2α+ 1)Γ(4α+ 1)Γ(6α+ 1)t7α

(Γ(α+ 1))4Γ(3α+ 1)Γ(5α+ 1)Γ(7α+ 1)
− 4

Γ(4α+ 1)t5α

(Γ(2α+ 1))2Γ(5α+ 1)

+4
Γ(2α+ 1)Γ(5α+ 1)t6α

(Γ(α+ 1))2Γ(2α+ 1)Γ(3α+ 1)Γ(6α+ 1)
− (Γ(2α+ 1))2Γ(6α+ 1)t7α

(Γ(α+ 1))4(Γ(3α+ 1))2Γ(7α+ 1)
+ . . .

In particular case α = 1, then we get

y(t) = t+ t2 +
t3

3
− t4

3
− 7t5

15
+ . . .

The exact solution when α = 1 is given by

y(t) = 1 +
√
2 tanh

(√
2t+ 1

2 log
(√

2−1√
2+1

))
.

Table 1 shows that approximate solutions y(t) for Eq. (5.1) which are ob-

tained for di�erent values of α using the Sumudu decomposition method

[SDM]. From the numerical results, it is clear that the approximate solu-

tions of SDM are in best agreement with approximate solutions of IRKHSM

[21]. According to convergence of decomposition method, the obtained in�-

nite series is rapidly convergent. Table 2 shows the achieved absolute errors

of SDM are minor in range as compared to IRKHSM.

Figure 1 compare the e�ciency and accuracy of approximate solutions

and exact solution for distinct values of α = 0.75, 0.8, 0.9&1. We can see

that at α = 1, two non-linear curves are coincident with each other. It
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Table 1. Comparison of numerical results of Sumudu De-
composition Method (SDM) with IRKHSM for various val-
ues of t. (for α = 0.75, 0.9, 1, N = 6, n = 5)

t
Exact
solution

SDM
α = 1 α = 0.9 α = 0.75

0.0 0.0 0.0 0.0 0.0
0.2 0.241976 0.241984 0.316894 0.490154
0.4 0.567812 0.568021 0.729250 1.071474
0.6 0.953566 0.952512 1.264254 1.798569
0.8 1.346363 1.321216 1.936047 2.680022
1 1.689498 1.533333 2.757228 3.721149

t
Exact
solution

IRKHSM [21]
α = 1 α = 0.9 α = 0.75

0.0 0.0 0.0 0.0 0.0
0.2 0.241976 0.241884 0.314571 0.473076
0.4 0.567812 0.567738 0.697246 0.936880
0.6 0.953566 0.953490 1.107569 1.333068
0.8 1.346363 1.346324 1.477434 1.622033
1 1.689498 1.689427 1.765103 1.817550

Table 2. Comparison of absolute errors of SDM with
IRKHSM for α = 1.

t
Absolute Errors
SDM IRKHSM [21]

0.0 0.0 0.0
0.2 8.00E-6 9.23E�5
0.4 2.09E-4 7.35E�5
0.6 1.05E-3 7.56E�5
0.8 2.51E-2 3.94E�5
1 1.56E-1 7.12E�5

means that the obtained solutions are very close to the analytical solution.

Also, other three branches of curves at α = 0.75, 0.8&0.9 shows the closeness

between approximate and analytical solution.

Example5.2

We consider the Fractional Riccati di�erential equation [3]

Dαy(t) + y(t)− y2(t) = 0, 0 < α ≤ 1, 0 < t ≤ 1, (5.5)
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Figure 1. The behavior of approximate solutions and exact
solution for distinct values of α.

subject to initial condition

y(0) = 0.5, (5.6)

The exact solution when α = 1 is y(t) = e−t

e−t+1
.

By using Eq. (3.15) to Eq. (3.16), we can obtain initial approximation and

general iteration formula for the Eq. (5.5) to Eq. (5.6) as

y0(t) = 0.5 (5.7)

yn+1(t) = S−1[uαS{−yn(t) +An}] (5.8)

Further, we use Adomian polynomials Eq. (3.6) to Eq. (3.9), initial ap-

proximation Eq. (5.7) and (n + 1)th order approximation Eq. (5.8). We

can derive the following successive approximations.

y1(t) = −0.25
tα

Γ(α+ 1)
, y2(t) = 0,

y3(t) = 0.0625
Γ(2α+ 1)t3α

(Γ(α+ 1))2Γ(3α+ 1)
, and y4(t) = 0.

The convergent series solution is given by

y(t) =

∞∑
n=0

yn(t)

y(t) = 0.5− 0.25
tα

Γ(α+ 1)
+ 0.0625

Γ(2α+ 1)t3α

(Γ(α+ 1))2Γ(3α+ 1)
+ . . .
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Table 3. Comparison of numerical results of SDM with
TTM for various values of t. (for α = 1, N = 5, n = 3)

t SDM TTM [3] Exact Solution
0.0 0.5 0.5 0.5
0.2 0.450167 0.450065 0.450166
0.4 0.401333 0.401178 0.401312
0.6 0.354499 0.354203 0.354344
0.8 0.310667 0.309897 0.310026
1 0.270833 0.268837 0.268941

Table 4. Comparison of absolute errors of SDM with TTM
for α = 1.

t
Absolute Errors
SDM TTM [3]

0.0 0.0 0.0
0.2 1.00E-6 1.01334E-4
0.4 2.10E-5 1.34719E-4
0.6 1.55E-4 1.40666E-4
0.8 6.41E-4 1.28611E-4
1 1.89E-3 1.04154E-4

In particular case α = 1, then we obtain

y(t) = 0.5− 0.25t+ 0.0625
t3

3
+ . . .

The exact solution when α = 1 is given by y(t) =
e−t

e−t + 1
.

Table 3 shows that approximate solutions y(t) for Eq. (5.5) which are

obtained for di�erent values of α using the Sumudu decomposition method

[SDM]. From the computed results, it is clear that the approximate solutions

of SDM are in best agreement with approximate solutions of TTM [3].

According to convergence of decomposition method, the obtained in�nite

series is rapidly convergent. Table 4 shows the achieved absolute errors of

SDM which are minor in range as compared to TTM.

Figure 2 shows the comparison of the e�ciency and accuracy of approx-

imate solution and exact solution for distinct values of α = 0.75, 0.8, 0.9&1.

We can see that at α = 1, two non-linear curves are coincident with each
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Figure 2. The behavior of approximate solutions and exact
solution for distinct values of α.

other. It means that the obtained solutions are very close to the analytical

solution. Also, other three branches of curves at α = 0.75, 0.8&0.9 shows

the closeness between approximate and analytical solution.

Concluding comments

The Sumudu decomposition method is useful to �nd convergent series so-

lution of linear and non-linear fractional di�erential equations. The �rst

example shows that the results of SDM are identical with IRKHSM with

negligible absolute errors. The second example demonstrates approximate

solutions which are similar with approximate solutions of TTM. The results

of SDM show its e�ciency and e�ectiveness because of its ability to solve

FDEs without calculation of arbitrary constants. The important fact is that

the present mixture is suitable for linear and nonlinear problems without

taking help of He's polynomial, without recognizing Lagrange's multiplier

and without applying quasilinearization procedure. We can clarify that

the derived numerical outcomes reach to an excellent level of approximate

results which are obtained by existing methods such as IRKHSM and TTM.
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Abstract. In this article, we present identities involving pseudo Fi-

bonacci polynomials and their derivatives. We also obtain the represen-

tation of rth order derivative of pseudo Fibonacci polynomials in terms

of derivatives of Fibonacci polynomials and pseudo Fibonacci polyno-

mials. Finally, we show that the nth pseudo-Fibonacci polynomial is

a solution of a non-homogeneous second-order linear hypergeometric

di�erential equation.

1. Introduction

Like Fibonacci sequence, Fibonacci polynomials also play a very impor-

tant role in the development of combinatorial related �elds in mathematics.

Various identities of Fibonacci polynomials and their extensions are stud-

ied in [1, 9, 12]. Two sequences of polynomials Jn(x) and jn(x), Jacobsthal

and Jacobsthal-Lucas polynomials, respectively, and their properties are

studied in [7]. In [15], the author has obtained results concerning the diago-

nal functions associated with generalized Fibonacci and Lucas polynomials.

The author also derives a number of interesting new results concerning the

derivatives of these polynomials. In [4], authors have de�ned Fibonacci

polynomials by

Fn(x) =


0, if n = 0

1, if n = 1

xFn−1 + Fn−2, if n > 1,

(1.1)

and following identities are obtained.

2010 Mathematics Subject Classi�cation: 11B37, 11B39, 11B83
Key words and phrases: Pseudo Fibonacci polynomials, Fibonacci polynomials,
Generating function

© Indian Mathematical Society, 2024 .
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(1) The combinatorial form of (1.1) is given by

Fn(x) =

[n−1
2

]∑
k=0

(
n− 1− k

k

)
xn−1−2k. (1.2)

(2) The generating function of (1.1) is given by

G(x, u) =
u

1− xu− u2
. (1.3)

Equation (1.3) can also be written as

∞∑
n=0

Fn(x) u
n =

u

1− xu− u2
. (1.4)

Note that, if the equation (1.4) is di�erentiated both sides r times, with

respect to x, then we get

∞∑
n=0

drFn

dxr
un =

r! ur+1

(1− xu− u2)r+1
.

Further, they have presented derivatives of these polynomials in the form of

convolution of k-Fibonacci polynomials. The identities showing the relation

of Fibonacci polynomials and their derivatives are also proved. One such

identity which we shall be using is

nFn(x) =
dFn+1

dx
+

dFn−1

dx
. (1.5)

The study of properties of derivatives of the Morgan-Voyce polynomi-

als can be seen in [8]. In [5] and [6], identities on �rst and second order

derivatives of Fibonacci and Lucas polynomials, respectively are obtained.

Identities on the higher order derivatives of Fibonacci and Lucas polynomi-

als are introduced in [16].

In [11], a new type of Fibonacci polynomials, called pseudo Fibonacci

polynomials, denoted by gn(x, t), are de�ned by

gn(x, t) = xgn−1(x, t) + gn−2(x, t) +Atn−2, for all n ≥ 2, (1.6)

with g0(x, t) = 0 and g1(x, t) = 1, where A is constant and t is non-zero

real number such that t ̸= x±
√
x2+4
2 .

We list below �rst few pseudo Fibonacci polynomials.

g2(x, t) = x+A, g3(x, t) = x2 + 1 +Ax+At,

g4(x, t) = x3 + 2x+A(x2 + 1) +Atx+At2,

g5(x, t) = x4 + 3x2 + 1 +A(x3 + 2x) +At(x2 + 1) +At2x+At3.
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Note that

gn(x, t) = Fn(x) +A

n−1∑
i=0

Fn−1−i(x) t
i (1.7)

and
∂gn
∂t

= A
n−2∑
i=0

(i+ 1)Fn−2−i(x) t
i. (1.8)

Various identities for these polynomials are also proved. We list a few of

these below.

(1) Binet type formula

gn(x, t) = c1α
n + c2β

n + ztn, (1.9)

where c1 =
1+z(β−t)

α−β , c2 = −1+z(α−t)
α−β , α = x+

√
x2+4
2 ,

β = x−
√
x2+4
2 and z = A

t2−xt−1
.

(2) Generating function

G(x, t, u) =
u(1 + (A− t)u)

(1− xu− u2)(1− tu)
. (1.10)

Thus, we have

∞∑
n=0

gn(x, t) u
n =

u
(
1 + (A− t)u

)
(1− xu− u2)(1− tu)

. (1.11)

The pseudo Fibonacci polynomial gn(x, t) can be written in the

combinatorial form using (1.2) and (1.7).

(3) Combinatorial form

gn(x, t) =

[n−1
2

]∑
k=0

(
n− 1− k

k

)
xn−1−2k

+A
n−2∑
i=0

[n−2−i
2

]∑
k=0

(
n− 2− i− k

k

)
xn−2−i−2k ti. (1.12)

In this paper, we present identities of pseudo Fibonacci polynomials

involving derivatives of these polynomials. We also present the rth order

derivative of these polynomials in the form of convolution of Fibonacci poly-

nomials and pseudo Fibonacci polynomials. In the last section we prove

that nth pseudo Fibonacci polynomial is a solution of second order linear

hypergeometric di�erential equation.
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2. Identities of pseudo Fibonacci polynomials

In this section, we �rst obtain some identities involving derivatives of

pseudo Fibonacci polynomials. Then we prove convolution property for rth

derivatives of gn(x, t).

Theorem 2.1. For all n, r ∈ Z+,

∂rgn+1

∂xr
= n

∂r−1gn
∂xr−1

− ∂rgn−1

∂xr
− ∂rgn+1

∂t∂xr−1
. (2.1)

Proof. Di�erentiating the equation (1.7) with respect to x, we get

∂gn
∂x

=
dFn

dx
+A

n−1∑
i=0

dFn−1−i

dx
ti. (2.2)

Thus, we have

∂gn+1

∂x
+

∂gn−1

∂x
=

dFn+1

dx
+

dFn−1

dx
+A

n∑
i=0

dFn−i

dx
ti +A

n−2∑
i=0

dFn−2−i

dx
ti

= nFn +A
n−1∑
i=0

(n− 1− i)Fn−1−i t
i, using (1.5)

= nFn + nA

n−1∑
i=0

Fn−1−i t
i −A

n−1∑
i=0

(i+ 1)Fn−1−i t
i

= ngn − ∂gn+1

∂t
.

Therefore
∂gn+1

∂x
= ngn − ∂gn−1

∂x
− ∂gn+1

∂t
. (2.3)

Di�erentiating equation (2.3) both sides (r − 1) times, with respect to

x, we obtain (2.1). □

Theorem 2.2. For n, r ∈ Z+,

(x2 + 4)
∂gn
∂x

= n
(
gn+1 + gn−1

)
− xgn − ∂gn+2

∂t
− ∂gn

∂t
. (2.4)

Proof. We prove (2.4) by induction on n. Clearly, the result holds for

n = 1, 2. Let k ≥ 2. Assume that the result is true for n ≤ k. We shall

prove that it is true for n = k + 1.

Taking n = k + 1 in (1.6) and di�erentiating it with respect to x, we get

∂gk+1

∂x
= gk + x

∂gk
∂x

+
∂gk−1

∂x
.
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Therefore

(x2 + 4)
∂gk+1

∂x
= (x2 + 4)gk + x(x2 + 4)

∂gk
∂x

+ (x2 + 4)
∂gk−1

∂x

= (x2 + 4)gk + xk
(
gk+1 + gk−1

)
− x2gk − x

∂gk+2

∂t
− x

∂gk
∂t

+ (k − 1)
(
gk + gk−2

)
− xgk−1 −

∂gk+1

∂t
− ∂gk−1

∂t
.

Further simpli�cation gives

(x2 + 4)
∂gk+1

∂x
= (k + 1)

(
xgk+1 + gk +Atk + xgk−1 + gk−2 +Atk−2

)
− x(xgk + gk−1 +Atk−1)− ∂gk+3

∂t
− ∂gk+1

∂t
.

This imples

(x2 + 4)
∂gk+1

∂x
= (k + 1)

(
gk+2 + gk

)
− x(gk+1)−

∂gk+3

∂t
− ∂gk+1

∂t
.

Therefore, by induction, the theorem is proved. □

Next, if we di�erentiate the equation (2.4) both sides (r−1) times, with

respect to x, and rearrange the terms then we obtain the following result.

Theorem 2.3. For n, r ∈ Z+,

(x2 + 4)
∂rgn
∂xr

= n
(∂r−1gn+1

∂xr−1
+

∂r−1gn−1

∂xr−1

)
− (2r − 1)x

∂r−1gn
∂xr−1

− (r − 1)2
∂r−2gn
∂xr−2

− ∂rgn+2

∂t∂xr−1
− ∂rgn

∂t∂xr−1
. (2.5)

Theorem 2.4. For n, r ∈ Z+,

∂rgn+1

∂xr
=


0, n < r;

r!, n = r;

1
n−r

[
nx∂rgn

∂xr + (n+ r)∂
rgn−1

∂xr + r ∂rgn+1

∂t ∂xr−1

]
, n > r.

(2.6)

Proof. Note that gn+1 is the (n + 1)th polynomial having n as the highest

degree in x. Therefore, ∂rgn+1

∂xr = 0, for r > n and ∂rgn+1

∂xr = r!, for r = n.

If n > r, then we prove the result by induction on r.

Di�erentiating equation (1.6) and then multiplying the resulting equation

throughout by n,we get

n
∂gn+1

∂x
= ngn + nx

∂gn
∂x

+ n
∂gn−1

∂x
.
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Therefore, from equation (2.3), we get

(n− 1)
∂gn+1

∂x
= nx

∂gn
∂x

+ (n+ 1)
∂gn−1

∂x
+

∂gn+1

∂t
.

Thus, the result is true for r = 1.

Assume that it is true for r = k. Therefore,

∂kgn+1

∂xk
=

1

n− k

[
nx

∂kgn
∂xk

+ (n+ k)
∂kgn−1

∂xk
+ k

∂kgn+1

∂t ∂xk−1

]
.

Di�erentiating with respect to x

(n−k)
∂k+1gn+1

∂xk+1
=

[
n
∂kgn
∂xk

+nx
∂k+1gn
∂xk+1

+(n+k)
∂k+1gn−1

∂xk+1
+k

∂k+1gn+1

∂t ∂xk

]
.

(2.7)

Di�erentiating (2.3) k times, with respect to x, we get

n
∂kgn
∂xk

=
∂k+1gn+1

∂xk+1
+

∂k+1gn−1

∂xk+1
+

∂k+1gn+1

∂t∂xk
. (2.8)

Substituting R.H.S. of (2.8) in (2.7) in place of n∂kgn
∂xk , we get

(n−k−1)
∂k+1gn+1

∂xk+1
=

[
nx

∂k+1gn
∂xk+1

+(n+k+1)
∂k+1gn−1

∂xk+1
+(k+1)

∂k+1gn+1

∂t ∂xk

]
.

Thus, the result is true for n = k + 1. Hence, by induction on r the result

follows. □

Note that using (2.1) and (2.6), we obtain the following.

(n− r)
∂r−1gn
∂xr−1

= x
∂rgn
∂xr

+ 2
∂rgn−1

∂xr
+

∂rgn+1

∂t∂xr
, for all n ≥ r.

Theorem 2.5. For all n, r ∈ Z+ and n ≥ r,

∂rgn+1

∂xr
=

[n−r
2

]∑
j=0

(−1)j
[
(n− 2j)

∂r−1gn−2j

∂xr−1
− ∂rgn+1−2j

∂t∂xr−1

]
. (2.9)

Proof. We �rst prove that

∂gn+1

∂x
=

[n−1
2

]∑
j=0

(−1)j
[
(n− 2j)gn−2j −

∂gn+1−2j

∂t

]
, for all n ≥ 1. (2.10)

We prove (2.10) by induction on n. For n = 1, the result is true. Assume

that (2.10) is true for n ≤ m. Note that m may be an even or odd positive

integer, accordingly, we have two cases, m = 2k and m = 2k + 1, where

k ∈ Z+.
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Let m = 2k. Then, we have

∂g2k+1

∂x
=

k−1∑
j=0

(−1)j
[
(2k − 2j)g2k−2j −

∂g2k+1−2j

∂t

]
. (2.11)

Also,

∂g2k
∂x

=

k−1∑
j=0

(−1)j
[
(2k − 1− 2j)g2k−1−2j −

∂g2k−2j

∂t

]
. (2.12)

Equation (1.6) implies

∂g2k+2

∂x
= g2k+1 + x

∂g2k+1

∂x
+

∂g2k
∂x

= g2k+1 + x
k−1∑
j=0

(−1)j
[
(2k − 2j)g2k−2j −

∂g2k+1−2j

∂t

]

+

k−1∑
j=0

(−1)j
[
(2k − 1− 2j)g2k−1−2j −

∂g2k−2j

∂t

]

= g2k+1 +

k−1∑
j=0

(−1)j
[
(2k − 2j)

(
g2k+1−2j −At2k−1−2j

)
− ∂

∂t

(
xg2k+1−2j + g2k−2j −At2k−2j

)]
= g2k+1 +

k−1∑
j=0

(−1)j
[
(2k + 1− 2j)

(
g2k−2j −At2k−1−2j

)
−

∂g2k+2−2j

∂t
+ (2k − 2j)At2k−1−2j

]
.

Further simpli�cation yields

∂g2k+2

∂x
=

k∑
j=0

(−1)j
[
(2k + 1− 2j)g2k+1−2j −

∂g2k+2−2j

∂t

]
.

Similarly, the result can be proved for m = 2k+1. Thus, the result is valid

for n = m+ 1. Hence, by induction on n, (2.10) is proved.

Now di�erentiate the equation (2.10), (r−1) times, both sides with respect

to x, to obtain

∂rgn+1

∂xr
=

[n−1
2

]∑
j=0

(−1)j
[
(n− 2j)

∂r−1gn−2j

∂xr−1
− ∂rgn+1−2j

∂t∂xr−1

]
. (2.13)
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Equation (2.6) implies ∂rgn+1

∂xr = 0, if n < r. Therefore, we have

∂rgn+1

∂xr
=

[n−r
2

]∑
j=0

(−1)j
[
(n− 2j)

∂r−1gn−2j

∂xr−1
− ∂rgn+1−2j

∂t∂xr−1

]
, for all n ≥ r.

□

Using (2.1) and (2.9), we obtain the following.

∂rgn−1

∂xr
=

[n−r
2

]∑
j=1

(−1)j+1
[
(n−2j)

∂r−1gn−2j

∂xr−1
− ∂rgn+1−2j

∂t∂xr−1

]
, for all n ≥ r+2.

Convolved Fibonacci numbers and polynomials have been considered in

[12, 14] to derive various properties. We derive the convolution formula for

derivatives of pseudo Fibonacci polynomials.

Theorem 2.6. Convolution property:

(i) For all n, r ∈ Z+,

∂rgn
∂xr

= r
n∑

i=0

(dr−1Fi

dxr−1

)
gn−i. (2.14)

(ii) For all n, r ∈ Z+ and n ≥ r,

∂rgn
∂tr

= r!
n−r∑
i=0

(
gn−r−i − Fn−r−i

) (
i+ r − 1

r − 1

)
ti. (2.15)

Proof. (i) Let n ≥ 0 and r ∈ Z+.

Di�erentiating (1.11) r times, with respect to x,we get

∞∑
n=0

∂rgn
∂xr

un =
r! ur+1(1 + (A− t)u)

(1− xu− u2)r+1(1− tu)

=
r (r − 1)! ur

(1− xu− u2)r
u(1 + (A− t)u)

(1− xu− u2)(1− tu)

= r
( ∞∑

n=0

dr−1Fn

dxr−1
un

)( ∞∑
n=0

gnu
n
)
.

Equating the coe�cient of un, we get

∂rgn
∂xr

= r
n∑

i=0

(dr−1Fi

dxr−1

)
gn−i.
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(ii) Di�erentiating (1.11) both sides r times, with respect to t, we get

∞∑
n=0

∂rgn
∂tr

un =
u

(1− xu− u2)

∂r

∂tr

[(1 + (A− t)u
)

(1− tu)

]
=

u

(1− xu− u2)

{(
(1 + (A− t)u

)[ r!ur

(1− tu)r+1

]
− ru

[(r − 1)!ur−1

(1− tu)r

]}

=
r!ur+1

(
(1 + (A− t)u

)
(1− xu− u2)(1− tu)

[ 1

(1− tu)r

]
− r!ur+1

(1− xu− u2)

[ 1

(1− tu)r

]
= r!

[( ∞∑
n=0

gnu
n+r

)( ∞∑
n=0

(
n+ r

r

)
tnun

)]
− r!

[( ∞∑
n=0

Fnu
n+r

)( ∞∑
n=0

(
n+ r

r

)
tnun

)]
.

Equating the coe�cient of un, we get

∂rgn
∂tr

= r!
n−r∑
i=0

(
i+ r − 1

r − 1

)[
gn−r−i − Fn−r−i

]
ti.

□

3. Pseudo Fiboanacci polynomials and Differential equations

Hypergeometric functions play an important role in Mathematics and

Physics. Many special functions can be deduced from it. Euler introduced

this function as a power series de�ned by

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
,

where a, b, c are rational parameters, c ̸= 0,−1,−2, · · · , Re(c) > Re(b) >

0 and |z| < 1. He also proved that this series satis�es hypergeometric

equation, which is a second-order linear di�erential equation

z(1− z)
d2y

dz2
+ [c− (a+ b+ 1)z]

dy

dz
− aby = 0. (3.1)

This di�erential equation occurs in many branches of mathematics, physics,

and other sciences; see [13]. In [2], the author uses linear and quadratic

transformations of hypergeometric functions to derive various representa-

tions of Fibonacci numbers in terms of hypergeometric functions. In [3],
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the authors prove that the nth Fibonacci polynomial Fn, satisfy the hyper-

geometric equation

(x2 + 4)
d2y

dx2
+ 3x

dy

dx
− (n2 − 1)y = 0

and further showed that Fn(z) can be written as Fn(z) = 2F1

(
1−n
2 , 1+n

2 ; 32 ; z
)
,

where z = 1 + x2

4 . In [10], the general solution of the second-order non-

homogeneous k-hypergeometric di�erential equation

kz(1− z)
d2y

dz2
+ [c− (a+ b+ 1)kz]

dy

dz
− aby = f(z) (3.2)

is obtained, where a, b, c ∈ R, k ∈ R+, c ̸= 0,−1,−2, · · · , Re(c) > Re(b) >

0, |z| < 1 and f(z) =
∑m

i=1 diz
i, where di, i = 0, 1, 2, · · · ,m are real or

complex constants.

In this section, using the results of sections 1 and 2, we show that

the nth pseudo-Fibonacci polynomial is a solution of a non-homogeneous

second-order linear hypergeometric di�erential equation.

Theorem 3.1. The pseudo Fibonacci polynomials gn(x, t), satis�es the

non-homogeneous di�erential equation

(x2 + 4)
∂2y

∂x2
+ 3x

∂y

∂x
− (n2 − 1)y = −A

n−1∑
i=0

(i+ 1)(2n− 1− i)Fn−1−i(x) t
i,

(3.3)

where Fn−1−i(x) is (n− 1− i)th,Fibonacci polynomial, i = 0, 1, · · · , n− 1.

Proof. Di�erentiating equation (2.4) with respect to x on both sides, rear-

ranging the terms and then using equation (2.3), we get

(x2 + 4)
∂2gn
∂x2

+ 3x
∂gn
∂x

− (n2 − 1)gn = −(2n+ 1)
∂gn+1

∂t
+

∂2gn+2

∂t2
.

From equation (1.8), we have

(x2 + 4)
∂2gn
∂x2

+ 3x
∂gn
∂x

− (n2 − 1)gn = −(2n+ 1)A

n−1∑
i=0

(i+ 1)Fn−1−i(x)t
i

+A
n−1∑
i=0

(i+ 2)(i+ 1)Fn−1−i(x)t
i.

Simplifying further, we get

(x2+4)
∂2gn
∂x2

+3x
∂gn
∂x

− (n2− 1)gn = −A
n−1∑
i=0

(1+ i)(2n− 1− i)Fn−1−i(x)t
i.
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This completes the proof. □

Theorem 3.2. For n ≥ 1, the nth pseudo-Fibonacci polynomial gn(x, t),

satis�es the non-homogeneous second-order linear hypergeometric di�eren-

tial equation

z(1−z)
∂2y

∂z2
+
(3
2
−2z

)∂y
∂z

+
n2 − 1

4
y =

A

4

n−1∑
i=0

(i+1)(2n−1− i)Fn−1−i(z) t
i,

(3.4)

where Fn−1−i(z) = 2F1

(
1− n−i

2 , n−i
2 ; 32 ; z

)
, i = 0, 1, · · · , n− 1.

Proof. Take z = 1+ x2

4 . Therefore
∂y
∂x =

√
z − 1 ∂y

∂z ,
∂2y
∂x2 = (z−1)∂

2y
∂z2

+ 1
2
∂y
∂z .

Using equation (3.3), we get

4z
(
(z − 1)

∂2y

∂z2
+

1

2

∂y

∂z

)
+ 6(z − 1)

∂y

∂z
− (n2 − 1)y

= −A

n−1∑
i=0

(i+ 1)(2n− 1− i)Fn−1−i(z) t
i.

Dividing throughout by −4 and simplifying further we get the required

result. □
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Abstract. The Erdos-Szekeres conjecture provides a functional re-

lationship between the number of sides of a convex polygon and the

minimum number of points in general position on a plane required

to construct it. While the conjecture is true for small values of n,

it remains unproven. This paper studies the physiognomy of the ar-

rangement of points in relation to this conjecture and uses a shading

technique to determine the number of points needed for hexagons and

heptagons. The �ndings indicate that the conjecture may not be true

and that the relation may be governed by another series.

1. Introduction

Mathematician Esther Klein observed that four out of any �ve points on

a plane in general position are the vertices of a convex polygon. Following

this, Klein brought up a more generic problem statement with her then

fellow mathematicians, Paul Erdos and George Szekeres, who were part

of the group she was working with at that time. Klein's problem stated:

"What is the smallest number P (n) such that any set of P (n) points in the

plane in general position has a subset of size n that are the vertices of a

convex polygon?" Erdos and Szekeres worked on this problem extensively

and coined the conjecture in 1937 based on observations made with three,

four and �ve sided convex polygons.

2010 Mathematics Subject Classi�cation: 52C10
Key words and phrases: Erdos-Szekeres conjecture, Happy ending problem, Convex
polygons, Geometry, Proof

© Indian Mathematical Society, 2024 .
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The conjecture stated that if the number of sides of a convex polygon

is n, then the minimum number of points on a plane in general position

(i.e., no 3 points are collinear) required to construct this polygon is given

by P (n) = 2n−2 + 1 for all n ≥ 3.

n P (n)
3 3
4 5
5 9
6 17
7 33
8 65

Table 1. Values of n and P (n) as per the conjecture

The conjecture is illustrated for n = 4 here below. The left side of

the below �gure shows an arrangement of 4 points on a plane from which

a convex quadrilateral cannot be constructed. The right side of the �gure

shows how the addition of a 5th point to the same arrangement allows the

construction of a convex quadrilateral.

Figure 1. Example for P(4) = 5

By constructing explicit examples, Erdos and Szekeres later proved that:

P (n) ≥ 2n−2 + 1



30 PRASAD BALAKRISHNAN WARRIER

In 2016, Andrew Suk, proved that

P (n) ≤ 2n+o(n), for n ≥ 7

Suk also proved that for a su�ciently large n,

P (n) ≤ 2n+6n2/3logn

Andreas F. Holmsen, Hossein Nassajian Mojarrad, János Pach and Gábor

Tardos [?] claimed an improvement over Suk's proof in 2020:

P (n) ≤ 2n+O(
√
nlogn)

Erdos named the problem the Happy Ending Problem since it led to the

marriage of Klein and Szekeres in 1937.

2. Methods

2.1. Convex Polygon. A polygon in which all interior angles have a mea-

sure of less than 180◦ is a convex polygon. In such a polygon, all vertices

point outwards, i.e., away from the center of the polygon. In other words,

the edges of a convex polygon always turn in the same direction; clockwise

or anti-clockwise. In contrast, a concave polygon has at least one internal

angle that is greater than 180◦. In the �gure below, the interior angle at

vertex F , (∠AFE) is less than 180◦ in the convex polygon, and greater

than 180◦ in the concave polygon.

Figure 2. Di�erence between a Convex and a Concave polygon
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2.2. Regions around a convex polygon. Any point on a plane can be

added as a vertex to a convex n-gon. Depending on the region from which

this new point is selected, the new (n + 1)-gon may become convex or

concave. In other words, the construction of a convex polygon splits the

plane into two mutually exclusive regions based on the potential they have

to permit the addition of a vertex to the polygon maintaining its convexity.

This paper will examine these regions and will refer to these often. For

convenience, I will refer to the regions that permit the addition of a vertex

to the polygon (and retain convexity) as Happy Regions, named after

this conjecture. Happy regions are obtained by extending alternate sides of

a polygon. Extended alternate sides of a convex polygon may be parallel

or intersecting lines. If the lines intersect on the side between the alternate

sides, the region is �nite and triangular in shape. If they do not intersect

on the side or are parallel, they expand to ∞.

Figure 3. Happy regions around a quadrilateral

In the above illustration, the shaded areas around quadrilateral ABCD

are Happy regions. The point P in this region may be added so as to create

the convex polygon APBCD. On the other hand, point X cannot be added

since ABXCD is a concave polygon. As mentioned above, Happy regions

are either triangular in shape as seen on the sides of AD and AB or expand

to ∞ as seen on the sides of BC and CD.

Lemma 2.1. If a point on a plane lies either inside a convex polygon or in

the region of the vertically opposite angle arising from the intersection of its
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any two extended edges, then the point cannot be added as a vertex to the

convex polygon retaining its convexity.

Important: Note that Happy regions must be re-evaluated after the

addition of every new vertex.

2.3. Plane of saturation. The minimum number of points required to

draw an n-gon is one more than the points required to saturate a plane with

(n − 1)-gons. For example, to draw a pentagon you must have exhausted

all possible ways to draw a quadrilateral. In other words, the plane must

be saturated with quadrilaterals �rst. Keeping this in mind, lets look at

the classic example discussed earlier in Figure ??. To draw a quadrilateral,

we must �rst exhaust the plane with triangles. This can be explored by

drawing Happy regions.

Figure 4. Happy regions around a triangle

Figure ?? shows a triangle with Happy regions around it. If a point is

added to the unshaded region, it cannot change the triangle to a convex

quadrilateral. This means that the plane is not saturated with triangles yet

and there is opportunity to add an additional point. Let us add a point D

inside the triangle.

Adding point D, (Refer: Figure ??) we get 4 triangles, namely, △ABC,

△ABD, △DBC and △DCA. Figure ?? shows the Happy regions around

the triangle△DCA. If we also draw the Happy regions for triangles△ABD

and △DBC, they will cover the whole plane as shown in Figure ??.
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Figure 5. Happy regions around △ADC

Figure 6. Happy Plane of Triangles

This means that adding a point anywhere on the plane now will create

at least one quadrilateral. For the purpose of this paper, we will refer to

such a plane as a Happy Plane. This is how Figure ?? came about. One

way to determine the arrangment that saturates a plane with (n−1)-gon is

to iteratively add points to non-Happy regions and re-draw Happy regions

with each point. Although the method is largely inconvenient and does not

serve as a proof, it still might help us �nd these arrangements.
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De�nitions:

Happy Region: Regions between any two extended alternate sides outside

a convex polygon is referred to as a Happy Region. A point selected from

this region can be added as a vertex to the convex n-gon to create a convex

(n+ 1)-gon.

Happy Plane: If Happy Regions of convex n-gons cover the whole plane

and no point lies in the happy regions of any of the convex n-gons, then

the plane is said to be saturated with only n-gons. Such a plane is referred

to a Happy Plane of n-gons. It must be noted that since no point lies on

the Happy Regions, no subset of (n+1)-points is the vertex-set of a convex

(n+1)-gon. Thus, happy planes of (n−1)-gons are maximal con�gurations

that do not admit an n-gon.

2.4. Happy plane of Quadrilaterals. A convex pentagon can be con-

structed from 9 points (in general position) on a plane (Refer Table ??).

Therefore, there must be an arrangement of 8 points in which a convex pen-

tagon cannot be constructed. In other words, there must be an arrangment

of 8 points that saturates the construction of convex quadrilaterals. The

arrangement of 8 points shown in Figure ?? does not allow the construction

of a convex pentagon.

To understand why this arrangement is saturated with convex quadri-

laterals, we will shade the Happy Regions until we get a Happy Plane or

there are no more Happy Regions to shade. To do this, we will connect the

points and begin by shading the quadrilaterals facing outwards as shown in

Figure ??. The below images show the shading of Happy regions of quadri-

laterals starting with the outward facing quadrilaterals and then the inner

regions after drawing the diagonal AC.

As it can be seen, this arrangment creates a Happy Plane of convex

quadrilaterals. Adding a point anywhere on the plane will turn at least one

of the quadrilaterals into a convex pentagon.

2.5. Arrangement of points to saturate a plane with

convex pentagons. The conjecture states that a convex hexagon can be

constructed with 17 points. In other words, there can be an arrangement of

16 points in which there are no convex hexagons. To check this, we will start
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Figure 7. An arrangement of 8 points with no convex pentagons

Figure 8. The 8 points creates 4 outward facing quadrilat-
erals when connected

the construction with 5 points at the vertices of a regular convex pentagon

and then use trial and error to �x an additional 2 points along each vertex.

Since the vertices of a regular pentagon are not in line with its center, we

will be able to add one additional point at the center. We will then shade

the Happy Regions and if there are non-Happy regions, we will add points

in these gaps and iteratively shade the regions until we have a Happy Plane.
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Figure 9. Construction of a pentagon with a point at the
center and 2 additional points along each vertex

Figure 10. Shading Happy Regions of outward facing pentagons
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Figure 11. Shading Happy Regions of other pentagons (partly)

Figure 12. A Happy Plane of convex Pentagons is achieved
at 16 points and no further shading is needed.
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2.5.1. Observations on Convex Pentagons. In the above construction, we

started o� with 5 points and then with trial and error we were able to

create an arrangment of 16 points that saturates the plane with convex

Pentagons. A Happy Plane was achieved at 16 points and no further shad-

ing was required. Given below are the coordinates of the 16 points in the

arrangment above for further research:

Vertices: {{x:240, y:186}, {x:319, y:244}, {x:288, y:337}, {x:190, y:336},

{x:160, y:243}}

Along Vertex 1:{{x:191, y:129},{x:180, y:111}}

Along Vertex 2:{{x:352, y:175},{x:367, y:159}}

Along Vertex 3:{{x:357, y:341},{x:377, y:349}}

Along Vertex 4:{{x:201, y:399},{x:199, y:420}}

Along Vertex 5:{{x:98, y:268},{x:77, y:273}}

Center:{{x:240, y:263}}

2.6. Arrangement of points to saturate a plane with convex hexagons.

The conjecture states that a convex heptagon may be constructed with 33

points. In other words, there can be an arrangement with 32 points in which

there are no convex heptagons. We will begin our construction with fewer

points, i.e., we will use 6 points to form a regular hexagon.

Figure 13. Arrangement of 24 points that contains only hexagons.
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We will then add 3 additional points near each vertex in a manner

that no convex heptagons are created. To accomplish this we will make

positional adjustments using trial and error along two vertices and then

copy the arrangment to the remaining vertices. This will give us a total of

24 points, a number that is lower than 32 as shown in Figure ??.

Figure 14. Non-Happy Regions: A and B along the ver-
tices and C at the center.

After this, we will shade the Happy regions of hexagons and add new

points in the gaps (non-Happy regions) and iteratively reshade them until

we have a Happy Plane of convex hexagons. When we �nish, we will count

the total number of points in the arrangement and verify it with the number

stated by the conjecture.

2.6.1. Observations on Convex Hexagons. In the above construction, we

started o� with 24 points and then were able to add only a maximum of 6

points. The Happy Plane was achieved with just 30 points (Refer Figure

??). This means that this arrangement of 30 points saturates hexagons on a

plane and the addition of one more point would result in a convex heptagon.

Given below are the coordinates of the 30 points of the arrangment:

Vertices: {{x:396, y:143},{x:586, y:246},{x:591, y:462},{x:406, y:575},

{x:216, y:471},{x:211, y:254}}

Along Vertex 1: {{x:319, y:91},{x:320, y:80},{x:324, y:15}}

Along Vertex 2: {{x:591, y:153},{x:602, y:149},{x:660, y:120}}

Along Vertex 3: {{x:673, y:421},{x:682, y:428},{x:737, y:464}}

Along Vertex 4: {{x:483, y:625},{x:481, y:636},{x:477, y:701}}
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Figure 15. Adding 6 points inside B creates a Happy Plane
i.e., the new Happy Regions covers A, B and C.

Along Vertex 5: {{x:209, y:563},{x:199, y:568},{x:140, y:597}}

Along Vertex 6: {{x:128, y:296},{x:119, y:289},{x:64, y:253}}

Inner points: {{x:393, y:154},{x:574, y:250},{x:581, y:454},{x:408, y:562},

{x:228, y:467},{x:219, y:262}}

2.7. Arrangement of points to saturate a plane with convex hep-

tagons. The conjecture states that a convex octagon may be constructed

with 65 points. In other words, there can be an arrangment of 64 points

in which there are no convex octagons. To validate this, we will begin our

construction in the same way as we did for convex hexagons. We will create

an arrangment that makes up a regular heptagon and then add 3 points

along each vertex using trial and error. Since we are using a regular con-

vex heptagon, the vertices are not in line with the center of the heptagon.

Taking advantage of this, we should be able to add one point at the center

as well.
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Figure 16. Arrangement of 29 points that contains only heptagons.
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We will then shade the Happy regions of convex heptagons and add new

points in the non-Happy regions and iteratively reshade them until we have

a Happy Plane.

Note: In the images, the heptagon drawn was not perfectly regular. Due

to this the non-Happy Regions are not perfectly symmetrical. Irregularities

have been taken into account when shading the regions and shading is per-

formed as per the structure of the heptagon drawn.

Figure 17. Non-Happy Regions are the white regions.
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Figure 18. Adding the 7 points as shown created a Happy Plane.

Figure 19. Final arrangement of points.
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2.7.1. Observations on Convex Heptagons. In the above construction, we

started o� with 29 points and then we were able to add a maximum of

7 more points. The Happy Plane of convex heptagons was achieved with

just 36 points (Refer: Figure ??). This means that this arrangement of 36

points saturates convex heptagons on a plane and the addition of one more

point would result in a convex octagon. Given below are the coordinates of

the 36 points in the arrangment above for further research:

Vertices: {{x:411, y:182},{x:566, y:260},{x:604, y:436},{x:497, y:576},

{x:324, y:575},{x:217, y:435},{x:256, y:260}}

Along Vertex 1: {{x:358, y:119},{x:361, y:108},{x:374, y:44},{x:349,

y:135}}

Along Vertex 2: {{x:585, y:174},{x:596, y:170},{x:654, y:141},{x:562,

y:179}}

Along Vertex 3: {{x:681, y:391},{x:691, y:396},{x:750, y:424},{x:663,

y:376}}

Along Vertex 4: {{x:573, y:608},{x:575, y:619},{x:591, y:683},{x:574,

y:584}}

Along Vertex 5: {{x:344, y:658},{x:337, y:667},{x:297, y:718},{x:365,

y:642}}

Along Vertex 6: {{x:165, y:508},{x:153, y:507},{x:88, y:508},{x:192,

y:515}}

Along Vertex 7: {{x:171, y:268},{x:164, y:258},{x:123, y:208},{x:181,

y:290}}

Central point: {{x:411, y:381}}

2.8. Indications of a failing hypothesis. I started o� with the hypoth-

esis that the conjecture is true. The points required to saturate a plane

with convex pentagons (16) doubled from the number of points required to

saturate a plane with convex quadrilaterals (8) and it appeared that the

conjecture was true until this point. Continuing on the same hypothesis, I

made several attempts to create an arrangment that saturates a plane with

convex hexagons using 32 points. It was possible to contain the arrangement

to convex hexagons until 24 points. However, 32 points always gave way to

convex heptagons. During my study, some arrangements seemed to suggest

that this number could only be a maximum of 30. A rigourous exercise of

shading the Happy Regions for convex hexagons con�rmed this number to
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be 30. Following this, I then proceeded to shade the Happy Regions for

convex heptagons and the Happy Plane was achieved at 36 points.

The table below compares the number of points required to saturate

a plane (S(n)) with convex n − gons as per my constructions against the

value proposed by the ES conjecture.

n S(n) by Construction S(n) by ES-Conjecture
3 4 4
4 8 8
5 16 16
6 30 32
7 36 64

Table 2. Values of n and S(n) by Construction vs by Conjecture

As shown in the table above, the resulting series of saturation points

from my constructions is 4,8,16,30,36... . The minimum number of points

required to construct an n − gon would therefore be one more than these,

i.e., 5,9,17,31,37... . From these constructions and my observation, it ap-

pears that the number of points required to create a speci�c n − gon is

lesser than what is described by the conjecture. The next question that

comes to mind is: How many points does the conjecture say is required to

create a slightly larger polygon, say, a 15-gon (pentadecagon) or a 25-gon

(pentacosagon)? If we used the formula in the ES conjecture, this would

be 8,193 points for a 15-gon and 83,88,609 points for a 25-gon. A number

close to 1 crore is arguably large for a rather small convex construction of

a 25-gon, although that can never be a reason for why it should not be.

The series 4,8,16,30,36... was not easy to determine. However, the OEIS

Foundation Inc. (2023) has a reference to this series and terms it as a bi-

section [?] of a series 1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72,

96, 120, 128, 144, 180, 192, 210, 216..., which is the least integer of each

prime signature [?]. Our constructions con�rm with reasonable accuracy

that P (4) = 5, P (5) = 9, P (6) = 17, P (7) = 31 and P (8) = 37 (Sat-

urations at 4,8,16,30,36). However, we cannot be sure if the series would

diverge from P (9). With some more research it should be possible to reason

why this series presents in this manner and provide a generic proof of the
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same.

Nonetheless, if we extended our series to a 25-gon, our saturation points

S(n), would compare to those in the conjecture as shown in the table below.

n S(n) by Construction S(n) by ES-Conjecture
3 4 4
4 8 8
5 16 16
6 30 32
7 36 64
8 60 128
9 72 256
10 120 512
11 144 1024
12 192 2048
13 216 4096
14 256 8192
15 360 16384
16 420 32768
17 480 65536
18 576 131072
19 768 262144
20 864 524288
21 960 1048576
22 1080 2097152
23 1260 4194304
24 1440 8388608
25 1680 16777216

Table 3. Values of n and S(n) by Construction vs by Conjecture

3. Concluding Comments

The relationship between the number of sides of a convex polygon and

the minimum number of points in general position required to construct it

as suggested by the Erdos�Szekeres conjecture (Happy ending problem) is

incorrect. Although the ES-conjecture is valid for n = 3 (trivial), n = 4,

n = 5 and n = 6, constructions indicate that the value of P (n) is lower for

n = 7 and n = 8 when compared to the conjecture. The series 5,9,17,31,37

that we �nally have from our constructions is related to prime numbers.
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The discussion regarding the signi�cance of this series to this conjecture is

beyond the scope of this paper and nothing further needs to be said.

Acknowledgement: We are grateful to the referee for the comments which

improved the quality of the paper.
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Abstract. For a rational function r ∈ Rn Wali and Shah [The J. of

Anal., 25(1):(2017), 43-53] proved:

|r′(z)| ≥ 1

2

{
|B′(z)|+ |cn| − |c0|

|cn|+ |c0|

}
|r(z)|.

In this paper, we consider a more general class of rational functions

r(s(z)) of degree mn, where s(z) is a polynomial of degree m. We

use simple techniques to strengthen generalizations of certain results,

which extend some well known polynomial inequalities due to Turán

and Erdös-Lax to a special class of rational functions r(s(z)). In par-

ticular we improve as well as generalize the results due to Qasim and

Liman [Indian. J. Pure Appl. Math. 46(3): (2015), 337-348].

1. Introduction

Let Pn denote the class of all complex polynomials p(z) :=
n∑

j=0

ajz
j of

degree at most n and p′ be its derivative. Also let Rn = Rn(α1, ..., αn) :={
p(z)
w(z) : p ∈ Pn, w(z) =

∏n
j=1(z−αj), |αj | > 1, 1 ≤ j ≤ n

}
denote the class

of rational functions with poles α1, α2, ..., αn and with �nite limit at in�nity.

LetD−
k represent the set of all points which lie inside Tk := {z : |z| = k > 0}

and D+
k be the set of points which lie outside Tk. Also

B(z) :=
n∏

j=1

(
1− αjz

z − αj

)
=

w∗(z)

w(z)
,

is known as Blaschke product satisfying |B(z)| = 1 for z ∈ T1. We observe

that B ∈ Rn. Concerning the estimate of max
z∈T1

|p′(z)| in terms of max
z∈T1

|p(z)|,
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Bernstein [2] proved the following:

If p ∈ Pn, then for any z ∈ C

max
z∈T1

|p′(z)| ≤ nmax
z∈T1

|p(z)|. (1.1)

This inequality can be sharpened if there is a restriction on the zeros of

p(z). In fact, if p(z) ̸= 0 in D−
1 , then

max
z∈T1

|p′(z)| ≤ n

2
max
z∈T1

|p(z)|, (1.2)

whereas in reverse direction, if p(z) ̸= 0 in D+
1 , then (1.2) can be replaced

by

max
z∈T1

|p′(z)| ≥ n

2
max
z∈T1

|p(z)|. (1.3)

Both the inequalities are sharp and equality in each holds for the poly-

nomials of the form p(z) = azn + b, where |a| = |b|. Inequality (1.2) was

conjectured by Erdös and latter veri�ed by Lax [4], whereas inequality (1.3)

is due to Turán [10]. Concerning the estimate of min
z∈T1

|p′(z)|, Aziz and Da-

wood [1] proved:

If p ∈ Pn has all zeros in T1 ∪D−
1 , then

min
z∈T1

|p′(z)| ≥ nmin
z∈T1

|p(z)|. (1.4)

Li, Mohapatra and Rodriguez [3] gave a new perspective to Bernstein-

type inequalities and extended them to rational functions r ∈ Rn with

prescribed poles α1, α2, ..., αn replacing zn by B(z). Among other things

they proved the following:

Theorem 1.1. If all the zeros of r ∈ Rn lie in T1 ∪D−
1 , then for z ∈ T1

|r′(z)| ≥ 1

2
|B′(z)||r(z)|. (1.5)

The result is sharp and equality holds for the rational function

r(z) = aB(z) + b, |a| = |b| = 1.

Recently Wali and Shah [11] improved inequality (1.5) by taking into

consideration the coe�cients of a polynomial p(z) :=
n∑

j=0
cjz

j and proved

the following:
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Theorem 1.2. If r ∈ Rn and all zeros of r lie in T1 ∪D−
1 , then for z ∈ T1

|r′(z)| ≥ 1

2

{
|B′(z)|+ |cn| − |c0|

|cn|+ |c0|

}
|r(z)|.

Qasim and Liman [9] considered a specialized class of rational functions

(r ◦ s)z = r(s(z)) de�ned by

(r ◦ s)z =
p(s(z))

w(s(z))
,

where p(z) =
n∑

j=0
ajz

j , s(z) =
m∑
j=0

bjz
j , and p ◦ s ∈ Pmn is de�ned by:

(p ◦ s)(z) = p(s(z))

= an
(
bmzm + bm−1z

m−1 + ...+ b0
)n
+

an−1

(
bmzm + bm−1z

m−1 + ...+ b0
)n−1

+ ...+ a0

= an

[(
n

0

)
bnmzmn +

((
n

1

)
bn−1
m bm−1

)
zmn−1 + ...+ bn0

]
+ · · ·+ a1b0 + a0

=

mn∑
j=0

cjz
j , where c0 =

n∑
j=0

ajb
j
0, ..., cmn = anb

n
m.

Also if r ∈ Rn, then r ◦ s ∈ Rnm and corresponding Blaschke product is

given by

B(z) :=
w∗(s(z))

w(s(z))
= zmnw(s(

1
z ))

w(s(z))
=

mn∏
j=1

(1− αjz)

(z − αj)
,

where

w(s(z)) = cmn

mn∏
j=1

(z − αj).

Throughout this paper we shall assume that all poles α1, α2, ..., αmn of

r(s(z)) lie in D+
1 . For this class of rational functions Qasim and Liman

[9] among other things proved the following:

Theorem 1.3. Let r ◦ s ∈ Rnm and r(s(z)) ̸= 0 in D+
1 , then for z ∈ T1,

|r′(s(z))| ≥ 1

2mM ′ |B
′(z)||r(s(z))|,

where M ′ = max
z∈T1

|s(z)|.
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Theorem 1.4. Let r ◦ s ∈ Rnm be such that r(s(z)) ̸= 0 in D−
1 , then for

z ∈ T1, |r′(s(z))| ≤
1

2mm′ |B
′(z)||r(s(z))|, where m′ = min

z∈T1

|s(z)|.

Mir et al. [5] improved Theorem 1.3 by proving the following:

Theorem 1.5. Let r◦s ∈ Rnm, and if all the zeros of r(s(z)) lie in T1∪D−
1 ,

then for some z ∈ T1

|r′(s(z)| ≥ 1

2mM ′

{∣∣B′(z)
∣∣+ |anbnm| −

∣∣ n∑
j=0

ajb
j
0

∣∣
|anbnm|+

∣∣ n∑
j=0

ajb
j
0

∣∣
}
|r(s(z))|,

where M ′ = max
z∈T1

|s(z)|.

2. Basic Lemmas

Lemma 2.1. If (yj)
∞
j=1 be a sequence of real numbers then for all n ∈ N

n∑
j=1

1− yj
1 + yj

≥
1−

n∏
j=1

yj

1 +
n∏

j=1
yj

, 0 ≤ yj ≤ 1. (2.1)

n∑
j=1

1− yj
1 + yj

≤
1−

n∏
j=1

yj

1 +
n∏

j=1
yj

, yj ≥ 1. (2.2)

The proof of Lemma 2.1 is a simple consequence of the principle of

mathematical induction.

Lemma 2.2. Let z ∈ T1, then

Re

(
z
(
w(s(z))

)′
w(s(z))

)
=

nm− |B′(z)|
2

. (2.3)

The above Lemma is due to Mir [6].

Lemma 2.3. Let r ◦ s ∈ Rnm and all zeros of s(z) lie in T1 ∪D−
1 , then for

z ∈ T1

|(r∗(s(z)))′|+ |(r(s(z)))′| ≤ |B′(z)| sup
z∈T1

|r(s(z))|.
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where r∗(s(z)) = B(z)r(s
(
1/z
)
).

The result is sharp and equality holds for r(s(z)) = uB(z) with u ∈ T1,

where s(z) = zm.

The above lemma is also due to Qasim and Liman [9].

3. Main Results

Theorem 3.1. Suppose r ◦ s ∈ Rnm be such that (r ◦ s)z =
p(s(z))

w(s(z))
, where

p ∈ Pn and s ∈ Pm. If all the zeros of r(s(z)) lie in Tk ∪D−
k , k ≤ 1, then

for z ∈ T1

|r′(s(z))| ≥ 1

2mM ′

{
|B′(z)|+mn(1− k)

1 + k
+2

(
mn∑
j=1

1

1 + |zj |
− mn

1 + k

)}
|r(s(z))|,

(3.1)

where M ′ = max
z∈T1

|s(z)|.

Since |zj | ≤ k, we have
|zj |
k

≤ 1 and therefore from Theorem 3.1

|r′(s(z))| ≥ 1

2mM ′

{
|B′(z)|+ mn(1− k)

1 + k
+ 2

(
mn∑
j=1

1

1 + |zj |
− mn

1 + k

)}
|r(s(z))|

=
1

2mM ′

{
|B′(z)|+ mn(1− k)

1 + k
+ 2

mn∑
j=1

(
1

1 + |zj |
− 1

1 + k

)}
|r(s(z))|

=
1

2mM ′

{
|B′(z)|+ mn(1− k)

1 + k
+

2k

1 + k

mn∑
j=1

k − |zj |
k + k|zj |

}
|r(s(z))|

≥ 1

2mM ′

{
|B′(z)|+ mn(1− k)

1 + k
+

2k

1 + k

mn∑
j=1

k − |zj |
k + |zj |

}
|r(s(z))|

=
1

2mM ′

{
|B′(z)|+ mn(1− k)

1 + k
+

2k

1 + k

mn∑
j=1

1− |zj |
k

1 +
|zj |
k

}
|r(s(z))|.
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Using inequality (2.1), we get

|r′(s(z))| ≥ 1

2mM ′

{
|B′(z)|+ mn(1− k)

1 + k
+

2k

1 + k

(1−
mn∏
j=1

|zj |
k

1 +
mn∏
j=1

|zj |
k

)}
|r(s(z))|

=
1

2mM ′

{
|B′(z)|+ mn(1− k)

1 + k
+

2k

1 + k

(1− 1

kmn

|
n∑

j=1

ajb
j
0|

|anbnm|

1 +
1

kmn

|
n∑

j=1

ajb
j
0|

|anbnm|

)}
|r(s(z))|.

Equivalently

|r′(s(z))| ≥ 1

2mM ′

{
|B′(z)|+mn(1− k)

1 + k
+

2k

1 + k

(kmn|anbnm| − |
n∑

j=1

ajb
j
0|

kmn|anbnm|+ |
n∑

j=1

ajb
j
0|

)}
|r(s(z))|.

Hence, we have the following:

Corollary 3.2. Suppose r ◦ s ∈ Rnm has all zeros in Tk ∪D−
k , k ≤ 1, and

s(z) is a polynomial of degree m, then for z ∈ T1

|r′(s(z))| ≥ 1

2mM ′

{
|B′(z)|+mn(1− k)

1 + k
+

2k

1 + k

( |anbnm|kmn −
∣∣ n∑
j=0

ajb
j
0

∣∣
|anbnm|kmn +

∣∣ n∑
j=0

ajb
j
0

∣∣
)}

|r(s(z))|.

Remark 3.3. Since all the zeros of r(s(z)) lie in Tk ∪ D−
k , k ≤ 1. If

z1, z2, ..., zmn are zeros of r(s(z)), therefore |zj | ≤ k for all j = 1, 2, ...,mn.

Therefore it can be easily veri�ed that

mn∑
j=1

1

1 + |zj |
− mn

1 + k
≥ 0.

This shows that inequality (3.1) improves a result due to Mir [6, Theorem

1].

Remark 3.4. Since r(s(z)) has all zeros in Tk ∪ D−
k , k ≤ 1, therefore

|zj | ≤ 1. Hence it can be easily veri�ed that

|anbnm| − |
n∑

j=1

ajb
j
0| ≥ 0.

This shows that Corollary 3.2 improves a result due to Mir [6, Theorem 1].



INEQUALITIES FOR RATIONAL FUNCTIONS WITH PRESCRIBED POLES 55

A result of Mir et al.[5, Theorem 4.1] is a special case of Corollary 3.2

when k = 1.

Remark 3.5. Also for s(z) = z and k = 1, Corollary 3.2 in particular

reduces to a result due to Wali and Shah [11, Theorem 2].

Proof of Theorem 3.1. Let r ◦ s ∈ Rnm, so that r(s(z)) =
p(s(z))

w(s(z))
.

If z1, z2, ..., zmn, are zeros of p(s(z)) with |zj | ≤ k ≤ 1, j = 1, 2, ...,mn,

therefore, it can be easily veri�ed that

Re

(
z
(
r(s(z))

)′
r(s(z))

)
= Re

(
z
(
p(s(z))

)′
p(s(z))

)
−Re

(
z
(
w(s(z))

)′
w(s(z))

)
.

By Lemma 2.2, we get for z ∈ T1

Re

(
z
(
r(s(z))

)′
r(s(z))

)
=

mn∑
j=1

Re

(
z

z − zj

)
− nm− |B′(z)|

2

=
mn∑
j=1

Re

(
z

z − zj

)
− nm

2
+

|B′(z)|
2

≥
mn∑
j=1

1

1 + |zj |
+

2mn− nm(1 + k)

2(1 + k)
+

|B′(z)|
2

− mn

1 + k
.

Since ∣∣∣∣∣z
(
r(s(z))

)′
r(s(z))

∣∣∣∣∣ ≥ Re

(
z
(
r(s(z))

)′
r(s(z))

)
Therefore we have for z ∈ T1∣∣∣∣∣z

(
r(s(z))

)′
r(s(z))

∣∣∣∣∣ ≥
mn∑
j=1

1

1 + |zj |
+

2mn− nm(1 + k)

2(1 + k)
+

|B′(z)|
2

− mn

1 + k
.

Equivalently for z ∈ T1,

|r′(s(z))||s′(z)| ≥ 1

2

{
|B′(z)|+ mn(1− k)

1 + k
+ 2

(
mn∑
j=1

1

1 + |zj |
− mn

1 + k

)}
|r(s(z))|.

Since by inequality (1.1) |s′(z)| ≤ mM ′, where M ′ = max
z∈T1

|s(z)|, therefore
we conclude

|r′(s(z))| ≥ 1

2mM ′

{
|B′(z)|+ mn(1− k)

1 + k
+ 2

(
mn∑
j=1

1

1 + |zj |
− mn

1 + k

)}
|r(s(z))|.

This completely proves Theorem 3.1.

As an improvement of Theorem 1.4, we next prove the following:
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Theorem 3.6. Suppose r ◦ s ∈ Rmn be such that (r ◦ s)z =
p(s(z))

w(s(z))
, where

p ∈ Pn and s ∈ Pm. If all the zeros of r(s(z)) lie in Tk ∪ D+
k , k ≥ 1 and

s(z) has all zeros in T1 ∪D−
1 . Then for any z ∈ Tk ∪D+

k and for z ∈ T1

|r′(s(z))| ≤ 1

2mm′

{
|B′(z)| − mn(k − 1)|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2

− 2
|r(s(z))|2(

sup
z∈T1

|r(s(z))|
)2
(

mn

1 + k
−

mn∑
j=1

1

1 + |zj |

)}
sup
z∈T1

|r(s(z))|,

(3.2)

where m′ = min
z∈T1

|s(z)|.

From inequality (3.2), we have

|r′(s(z))| ≤ 1

2mm′

{
|B′(z)| − mn(k − 1)|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2

− 2
|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2
(

mn∑
j=1

|zj | − k

|zj |+ 1

)}
sup
z∈T1

|r(s(z))|

≤ 1

2mm′

{
|B′(z)| − mn(k − 1)|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2

− 2
|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2
(

mn∑
j=1

|zj | − k

|zj |+ k

)}
sup
z∈T1

|r(s(z))|

=
1

2mm′

{
|B′(z)| − mn(k − 1)|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2

− 2
|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2
(

mn∑
j=1

|zj |
k

− 1

|zj |
k

+ 1

)}
sup
z∈T1

|r(s(z))|.
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Now using inequality (2.2), with
|zj |
k

≥ 1, j = 1, 2, ...,mn, we get

|r′(s(z))| ≤ 1

2mm′

{
|B′(z)| − mn(k − 1)|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2

+ 2
|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2
(1−

mn∏
j=1

|zj |
k

1 +
mn∏
j=1

|zj |
k

)}
sup
z∈T1

|r(s(z))|

=
1

2mm′

{
|B′(z)| − mn(k − 1)|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2

+ 2
|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2
( |anbnm|kmn −

∣∣ n∑
j=0

ajb
j
0

∣∣
|anbnm|kmn +

∣∣ n∑
j=0

ajb
j
0

∣∣
)}

sup
z∈T1

|r(s(z))|.

Hence, we have the following:

Corollary 3.7. Suppose r ◦ s ∈ Rnm has all its zeros in Tk ∪ D+
k , k ≥ 1,

and s(z) is a polynomial of degree m having all zeros in T1 ∪D−
1 . Then for

z ∈ T1

|r′(s(z))| ≤ 1

2mm′

{
|B′(z)| − mn(k − 1)|r(s(z))|2

(1 + k)
(
sup
z∈T1

|r(s(z))|
)2

− 2
|r(s(z))|2(

sup
z∈T1

|r(s(z))|
)2
(∣∣ n∑

j=0
ajb

j
0

∣∣− |anbnm|kmn

∣∣ n∑
j=0

ajb
j
0

∣∣+ |anbnm|kmn

)}
sup
z∈T1

|r(s(z))|.

where m′ = min
z∈T1

|s(z)|.

Remark 3.8. For s(z) = z and k = 1, Corollary 3.7 reduces to a result

due to Mir [7, Theorem 5].

Proof of Theorem 3.6. Since p(s(z)) is a polynomial of degree at-

most mn. Let z1, z2, ..., zmn, be the zeros of p(s(z)) with |zj | ≥ k ≥ 1, j =
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1, 2, ...,mn. Now we have

r(s(z)) =
p(s(z))

w(s(z))
,

and it can be easily veri�ed that

Re

(
z
(
r(s(z))

)′
r(s(z))

)
= Re

(
z
(
p(s(z))

)′
p(s(z))

)
−Re

(
z
(
w(s(z))

)′
w(s(z))

)
.

By Lemma 2.2, we get

Re

(
z
(
r(s(z))

)′
r(s(z))

)
=

mn∑
j=1

Re

(
z

z − zj

)
− nm− |B′(z)|

2

≤
mn∑
j=1

(
1

1 + |zj |

)
− nm

2
+

|B′(z)|
2

. (3.3)

Also for z ∈ T1, using the fact that |B′(z)| = zB′(z)

B(z)
, and |B(z)| = 1, one

can easily deduce that for r∗(s(z)) = B(z)r(s
(1
z

)
),

∣∣(r∗(s(z)))′∣∣ = ∣∣∣∣∣∣∣B′(z)
∣∣r(s(z))− z

(
r(s(z))

)′∣∣∣∣∣.
Hence for z ∈ T1, with r(s(z)) ̸= 0, we get by using inequality (3.4)∣∣∣∣∣z

(
r∗(s(z))

)′
r(s(z))

∣∣∣∣∣
2

=

∣∣∣∣∣∣∣B′(z)
∣∣− z

(
r(s(z))

)′
r(s(z))

∣∣∣∣∣
2

=
∣∣B′(z)

∣∣2 + ∣∣∣∣∣z
(
r(s(z))

)′
r(s(z))

∣∣∣∣∣
2

− 2
∣∣B′(z)

∣∣Re

{
z
(
r(s(z))

)′
r(s(z))

}

≥
∣∣B′(z)

∣∣2 + ∣∣∣∣∣z
(
r(s(z))

)′
r(s(z))

∣∣∣∣∣
2

− 2
∣∣B′(z)

∣∣ mn∑
j=1

1

1 + |zj |
+
∣∣B′(z)

∣∣(nm− |B′(z)|
)

=

∣∣∣∣∣z
(
r(s(z))

)′
r(s(z))

∣∣∣∣∣
2

+ nm|B′(z)| − 2|B′(z)|
mn∑
j=1

1

1 + |zj |
.

This gives for z ∈ T1
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∣∣r(s(z))∣∣2

− 2|B′(z)|
∣∣r(s(z))∣∣2 mn∑

j=1

1

1 + |zj |
. (3.4)

Now using Lemma 2.3, we get∣∣(r(s(z)))′∣∣+ [∣∣(r(s(z)))′∣∣2 + nm|B′(z)|
∣∣r(s(z))∣∣2

− 2|B′(z)|
∣∣r(s(z))∣∣2 mn∑

j=1

1

1 + |zj |

]1/2
≤
∣∣(r(s(z)))′∣∣+ ∣∣(r∗(s(z)))′∣∣ ≤ |B′(z)| sup

z∈T1

|r(s(z))|.

This gives on simpli�cation, with τ = sup
z∈T1

|r(s(z))|,

∣∣(r(s(z)))′∣∣ ≤ 1

2

{
|B′(z)| − mn|r(s(z))|2

τ2
+ 2

|r(s(z))|2

τ2

mn∑
j=1

1

1 + |zj |

}
τ

=
1

2

{
|B′(z)| − nm|r(s(z))|2

τ2

(
1− 2

k + 1

)

− mn|r(s(z))|2

τ2
2

1 + k
+ 2

|r(s(z))|2

τ2

mn∑
j=1

1

1 + |zj |

}
τ

=
1

2

{
|B′(z)| − nm|r(s(z))|2

τ2
k − 1

k + 1

− 2|r(s(z))|2

τ2

(
nm

1 + k
−

mn∑
j=1

1

1 + |zj |

)}
τ. (3.5)

Hence required inequality is obtained by combining inequality (1.4) with

inequality (3.5).
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PROPAGATION OF SH WAVES AT THE INTERFACE

OF A PIEZO-ELECTRIC LAYER AND A

PIEZO-MAGNETIC HALF SPACE
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Abstract. The problem of propagation of SH waves in a piezo-electric

layer overlying a piezo magnetic half space perfectly bonded with it has

been investigated. The basic equations have been formulated under

the assumption of continuity of displacement and other �elds. Fre-

quency equations are obtained for di�erent cases of electric and mag-

netic boundary conditions and solved numerically to �nd possible ex-

istence.

1. Introduction

The mathematical theory of surface acoustic waves (SAW) in solids de-

veloped in the late nineteenth and early twentieth century, and it played

a prominent role in explaining the nature of surface seismic waves. Such

waves have been used to study the interior of the earth. An important �eld

of application of these types of waves is heath monitoring of structures, and

the other is non-destructive evaluation of materials.

In recent years, elastic wave propagation in piezoelectric or smart ma-

terials has attracted attention because of potential applications ([1]). It is

seen that the electromechanical coupling can signi�cantly alter the proper-

ties of elastic waves and new velocities of propagation can arise ([2], [3]).

Of particular interest is the propagation of electro-magneto-elastic waves

in a composite structure consisting of two or more layers. Propagation char-

acteristics of Love-type/ SH waves in piezoelectric/piezomagnetic plates or

2010 Mathematics Subject Classi�cation: 11A41, 16N20
Key words and phrases: electro-magneto elasticity, piezo-electric materials,
piezo-magnetic materials, SH waves

© Indian Mathematical Society, 2024 .
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in layered composite structures have aroused considerable interest because

of wide-spread applicability in semi conductor devices in recent years. In

2001, the existence of Bluestein-Gulyaev waves in a piezoelectric layered

halfspace was investigated by Jin et al ([4]). Lee and Liu in 2004 stud-

ied plane waves in a in�nite piezoelectric plate with dissipation ([5]). SH

waves in a layered piezoelectric/piezomagnetic plate was discussed by Nie et

al ([6]), and studies on Love waves in a piezoelectric layered structure with

viscous dissipation have been carried-out by Du et al ([7]). The propagation

of surface waves in a piezoelectric half space coated with a semi-conductor

layer has been studied by Sharma et al ([8]). Love wave propagation in a

functionally graded piezoelectric material layer was analysed by Du et al

([9]). Shear wave propagation in a composite layered structure consisting

of two di�erent piezoelectric materials has been investigated by Gaur and

Rana ([10]). Recently, the e�ect of surface stress on waves in piezoelectric

materials has been analysed by Zhang et al ([11]) and by Gour ([12]). Goyel

et al ([13]) have discussed the e�ect of internal microstructure of a substrate

on waves in a piezoelectric ceramic layer. Di�erent aspects of waves propa-

gating in piezoelectric/piezomagnetic layered structures have been discussed

by Ezzin et al ([14]), Son and Kang ([15]), Soh and Lin ([16]), Melkumyan

and Mai([17]).

In this present paper the problem of SH SAW propagation has been

considered in Piezomagnetic half space with a piezoelectric layer perfectly

bonded to it. The frequency equation has been formulated under the as-

sumption of continuity at the interface and for di�erent electrical and mag-

netic boundary conditions on the open surface. A numerical investigation

has been done to determine the existence of real root.

2. Formulation and Basic Equations

The material under consideration is a piezo-electric layer (M2) overly-

ing a piezo-magnetic half space (M1) perfectly bonded with it. Both the

materials are with hexagonal symmetry (6mm) whose poling direction is

along x3 axis and x1 − x2 is the basal plane (Fig. 1). The thickness of

the piezoelectric layer is d. Let x1, x2, x3 denote the rectangular cartesian

coordinates with x3 oriented in the direction of the sixfold axis of a trans-

versely isotropic material in class 6mm . Let ϕ = ϕ(x1, x2, t) be the electric
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x1

x2

x2 = 0

x2 = -d
M2 : Piezoelectric Layer

M1 : Piezomagnetic Half - Space

Vacuum

Figure 1. Geometry of the problem

potential and ψ = ψ(x1, x2, t)) the magnetic potential s.t.

Ei = −ϕ,i and Hi = −ψ,i

where E is the electric �eld vector and H is the magnetic �eld vector.

The mechanical displacement vectors are (0, 0, u3(x1, x2, t)) in the x1x2

plane where ui(i = 1, 2, 3) is the mechanical displacement components. Let

Di(i = 1, 2, 3) be the electric displacement, Bi(i = 1, 2, 3) the magnetic

induction, ϵij(i, j = 1, 2, 3) be the mechanical strain, σij(i, j = 1, 2, 3) the

mechanical stress. Then

u1 = 0; u2 = 0; u3 = u3(x1, x2, t)

E1 = −ϕ,1; E2 = −ϕ,2; E3 = 0

H1 = −ψ,1; H2 = −ψ,2; H3 = 0

ϵ11 = 0, ϵ22 = 0, ϵ33 = 0, ϵ31 =
1
2u3,1, ϵ23 =

1
2u3,2, ϵ12 = 0

Let the elastic sti�ness coe�cients be cij , piezoelectric coe�cients be eij

and the piezomagnetic coe�cients be fij , (i, j = 1, 2, 3). Also let χij be the

dielectric permittivity and µij be the magnetic permeability (i, j = 1, 2, 3).

For Piezomagnetic Half Space the constitutive equations are :

Pm = QmRm

where Pm =
(
σm11, σ

m
22, σ

m
33, σ

m
23, σ

m
31, σ

m
12, D

m
1 , D

m
2 , D

m
3 , B

m
1 , B

m
2 , B

m
3

)t
,

Rm =
(

0, 0, 0, um3,2, u
m
3,1, 0, ϕ

m
,1 , ϕ

m
,2 , 0, ψ

m
,1 , ψ

m
,2 , 0

)t
,

Qm =
(
Qm

ij

)
(i, j = 1, 2, . . . 12)

with Qm
11 = Qm

22 = cm11, Q
m
12 = Qm

21 = cm12, Q
m
13 = Qm

31 = Qm
23 = Qm

32 = cm13 ,

Qm
33 = cm33, Q

m
44 = Qm

55 = cm44 , Q
m
66 = cm66 =

1
2(c

m
11 − cm12),
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Qm
1 12 = Qm

2 12 = Qm
12 1 = Qm

12 2 = fm31, Q
m
3 12 = Qm

12 3 = fm33,

Qm
4 11 = Qm

5 10 = Qm
10 5 = Qm

11 4 = fm15,

Qm
77 = Qm

88 = −χm
11, Q

m
99 = −χm

33, Q
m
10 10 = Qm

11 11 = −µm11, Qm
12 12 = −µm33

are the only non zero components of Qm
ij .

Therefore,

σm11 = 0, σm22 = 0, σm33 = 0, σm12 = 0;

σm23 = cm44u
m
3,2 + fm15ψ

m
,2 ;

σm13 = cm44u
m
3,1 + fm15ψ

m
,1 ;

Dm
1 = −χm

11ϕ
m
,1 ;

Dm
2 = −χm

11ϕ
m
,2 ;

Dm
3 = 0;

Bm
1 = fm15u

m
3,1 − µm11ψ

m
,1 ;

Bm
2 = fm15u

m
3,2 − µm11ψ

m
,2 ;

Bm
3 = 0

For Piezoelectric Layer the constitutive equations have the form :

P e = QeRe

where P e =
(
σe11, σ

e
22, σ

e
33, σ

e
23, σ

e
31, σ

e
12, D

e
1, D

e
2, D

e
3, B

e
1, B

e
2, B

e
3

)t
,

Re =
(

0, 0, 0, ue3,2, u
e
3,1, 0, ϕ

e
,1, ϕ

e
,2, 0, ψ

e
,1, ψ

e
,2, 0

)t
, Qe =

(
Qe

ij

)
(i, j =

1, 2, . . . 12)

with Qe
11 = Qe

22 = ce11, Q
e
12 = Qe

21 = ce12, Q
e
13 = Qe

31 = Qe
23 = Qe

32 = ce13 ,

Qe
33 = ce33, Q

e
44 = Qe

55 = ce44 , Q
e
66 = ce66 =

1
2(c

e
11 − ce12),

Qe
19 = Qe

29 = Qe
91 = Qe

92 = ee31, Q
e
39 = Qe

93 = ee33,

Qe
48 = Qe

57 = Qe
75 = Qe

84 = ee15,

Qe
77 = Qe

88 = −χe
11, Q

e
99 = −χe

33, Q
e
10 10 = Qe

11 11 = −µe11, Qe
12 12 = −µe33

are the only non zero components of Qe
ij .

Therefore,

σe11 = 0, σe22 = 0, σe33 = 0, σe12 = 0;

σe23 = ce44u
e
3,2 + ee15ψ

e
,2;

σe13 = ce44u
e
3,1 + ee15ψ

e
,1;
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De
1 = ee15u

e
3,1 − χe

11ϕ
e
,1;

De
2 = ee15u

e
3,2 − χe

11ϕ
e
,2;

De
3 = 0;

Be
1 = −µe11ψe

,1;

Be
2 = −µe11ψe

,2;

Be
3 = 0

The superscripts ′e′ and ′m′ refer to PE and PM materials respectively.

The equations of motion in the PE medium are :

ce44∇2ue3 + ee15∇2ϕe = ρeüe3

ee15∇2ue3 − χe
11∇2ϕe = 0

∇2ψ = 0 (2.1)

And for PM medium are:

cm44∇2um3 + fm15∇2ψm = ρmüm3

∇2ϕm = 0

fm15∇2um3 − µm11∇2ψm = 0 (2.2)

where ∇2 is the Laplacian operator in two dimension, ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2
,

ρ is the mass density.

The equations (2.1) and (2.2) are to be solved subject to the following

conditions :

Conditions at In�nity:

For PM half space. As x2 → ∞, um3 → 0, ϕm → 0, ψm → 0

Boundary Conditions: On (x2 = −d), the following conditions are sat-

is�ed:

(1) Mechanical stress free condition: σe23 = 0

(2) The electric and magnetic �elds satisfy any one of the following :

Case 1: Electrically closed Magnetically closed giving ϕe = 0,

ψe = 0

Case 2: Electrically open, Magnetically open giving De
2 = 0,

Be
2 = 0
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Also we have, Continuity Conditions at the interface: At the interface

(x2 = 0) of the PE layer and the PM half-space, continuity of displacement

and other �elds gives,

ue3 = um3 , ϕ
e = ϕm, ψe = ψm, σe23 = σm23, D

e
2 = Dm

2 , B
e
2 = Bm

2

3. Method of Solution:

Solution for SH waves propagating in the x1 direction can be taken in

the form:

In M2

ue3(x1, x2, t) = U e
3 (x2)e

ik(x1−ct)

ϕe(x1, x2, t) = Φe(x2)e
ik(x1−ct)

ψe(x1, x2, t) = Ψe(x2)e
ik(x1−ct) (3.1)

In M1

um3 (x1, x2, t) = Um
3 (x2)e

ik(x1−ct)

ϕm(x1, x2, t) = Φm(x2)e
ik(x1−ct)

ψm(x1, x2, t) = Ψm(x2)e
ik(x1−ct) (3.2)

where k is wave number, c is phase velocity.

Substituting (3.1) in equation (2.1) and (3.2) in equation (2.2),

for M2

d2U e
3

dx22
− k2λe2U e

3 = 0

d2Φe

dx22
− k2Φe =

ee15
χe
11

(
d2U e

3

dx22
− k2U e

3 )

d2Ψe

dx22
− k2Ψe = 0 (3.3)

Where λe =
√

1− c2

ceSH
2 , c

e
SH =

√
ce44+

ee15
2

χe
11

ρe
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for M1

d2Um
3

dx22
− k2λm2Um

3 = 0

d2Φm

dx22
− k2Φm = 0

d2Ψm

dx22
− k2Ψm =

fm15
µm11

(
d2Um

3

dx22
− k2Um

3 ) (3.4)

Where λm =
√

1− c2

cmSH
2 , c

m
SH =

√
cm44+

fm15
2

µm
11

ρm

Here ceSH and cmSH are the bulk shear wave velocities of PE and PM

materials respectively.

Therefore the solution (3.1) and (3.2) are written �nally as:

For ceSH < c < cmSH

ue3(x1, x2, t) = (Ae
1 cos (−kλex2) +Ae

2 sin (kλ
ex2))e

ik(x1−ct)

ϕe(x1, x2, t) = (M e
1e

−kx2 +M e
2e

kx2)eik(x1−ct) +
ee15
χe
11

(Ae
1 cos (−kλex2)

+ Ae
2 sin (kλ

ex2))e
ik(x1−ct)

ψe(x1, x2, t) = (Ce
1e

−kx2 + Ce
2e

kx2)eik(x1−ct) (3.5)

And

um3 (x1, x2, t) = Ame−kλmx2eik(x1−ct)

ϕm(x1, x2, t) = Mme−kx2eik(x1−ct)

ψm(x1, x2, t) = Cme−kx2eik(x1−ct) +
fm15
µm11

Ame−kλmx2eik(x1−ct) (3.6)

For cmSH < c < ceSH

ue3(x1, x2, t) = (Ae
1e

(−kλex2) +Ae
2e

(kλex2))eik(x1−ct)

ϕe(x1, x2, t) = (M e
1e

−kx2 +M e
2e

kx2)eik(x1−ct) +
ee15
χe
11

(Ae
1e

(−kλex2)

+ Ae
2e

(kλex2))eik(x1−ct)

ψe(x1, x2, t) = (Ce
1e

−kx2 + Ce
2e

kx2)eik(x1−ct) (3.7)
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And

um3 (x1, x2, t) = Ame−kλmx2eik(x1−ct)

ϕm(x1, x2, t) = Mme−kx2eik(x1−ct)

ψm(x1, x2, t) = Cme−kx2eik(x1−ct) +
fm15
µm11

Ame−kλmx2eik(x1−ct) (3.8)

4. Frequency Equations for Different Cases:

Substituting the solution (3.7) and (3.8) in the boundary conditions and

continuity conditions at the interface we get,

The stress free boundary condition gives

Ae
1[(c

e
44 +

ee15
2

χe
11

)λeeλ
ekd] +Ae

2[−(ce44 +
ee15

2

χe
11

)λeeλ
ekd] + M e

1 [e
e
15e

kd]

+M e
2 [e

e
15e

−kd] = 0 (4.1)

For the electrically and magnetically closed boundary conditions:

Ae
1[
ee15
χe
11

eλ
ekd] +Ae

2[
ee15
χe
11

e−λekd] +M e
1 [e

kd] +M e
2 [e

−kd] = 0 (4.2)

Ce
1 [e

kd] + Ce
2 [e

−kd] = 0 (4.3)

For the electrically and magnetically open boundary conditions:

M e
1 [e

kd] +M e
2 [−e−kd] = 0 (4.4)

Ce
1 [e

kd] + Ce
2 [−e−kd] = 0 (4.5)

The Continuity conditions lead to

Ae
1[1] +Ae

2[1] +Am[−1] = 0 (4.6)

Ae
1[
ee15
χe
11

] +Ae
2[
ee15
χe
11

] +M e
1 [1] +M e

2 [1] +Mm[−1] = 0 (4.7)

Ce
1 [1] + Ce

2 [1] +Am[− f
m
15

µm11
] + Cm[−1] = 0 (4.8)
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Ae
1[(c

e
44 +

ee15
2

χe
11

)λe] +Ae
2[−(ce44 +

ee15
2

χe
11

)λe] + M e
1 [e

e
15] +M e

2 [−ee15]

+Mm[−1] +Am[−(cm44 +
fm15

2

µm11
)λm] + Cm[−fm15] = 0 (4.9)

M e
1 [−χe

11] +M e
2 [χ

e
11] +Mm[χm

11] = 0 (4.10)

Ce
1 [−µe11] + Ce

2 [µ
e
11] + Cm[µm11] = 0 (4.11)

Thus the frequency equation is obtained by eliminating the arbitrary

constants from the magnetic and electric conditions given in the cases (1)

and (2)

For

Case 1:

det(N1) = 0

where N1 is the coe�cient matrix of equations (4.1), (4.2), (4.3), (4.6),

(4.7), (4.8), (4.9), (4.10) and (4.11).

For

Case 2:

det(N2) = 0

where N2 is the coe�cient matrix of equations (4.1), (4.4), (4.5), (4.6),

(4.7), (4.8), (4.9), (4.10) and (4.11).

In all cases the waves are dispersive.

5. Numerical Results and Discussion:

Numerical results are obtained by taking the Piezoelectric material

PZT −4 with Piezomagnetic material CoFe2O4 and Piezoelectric material

BaTiO3 with Piezomagnetic material CoFe2O4 with material properties

given in (Table 1).

The frequency equation has been numerically solved for each of the

stated electrical and magnetic boundary conditions and the wave velocities

are plotted against the non-dimensional wave number K = kd
2π

Numerical investigations are carried out for two separate cases where

the wave velocity lies between the two shear wave velocities of the two
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layers. For the BaTiO3/CoFe2O4 composite cmSH < c < ceSH , and for the

composite PZT − 4/CoFe2O4 , c
e
SH < c < cmSH .

Real wave velocity is found to exist for both situations. The wave

velocity is plotted against the non-dimensional wave number for the cases

as shown in (Fig.2), (Fig.3), (Fig.4).

6. Conclusions:

A problem on the propagation of guided SH waves in a piezoelectric-

piezomagnetic composite layer is investigated in this paper. The frequency

equation has been derived in closed form. The existence of real wave velocity

has been established through numerical solution of the frequency equation.

The important results obtained could be incorporated as follows:

• The phase velocity of the waves lie in between the bulk shear wave

velocities of the two materials.

• The velocity depends on the conditions on the boundary and real

waves do not exist for every electric and magnetic boundary condi-

tions.

• The nature of the dispersion curves are in�uenced by the properties

of the piezoelectric layer. The velocities of the waves are higher for

layers with larger shear wave velocities (This is in accordance with

Nie et al [6]).

• The waves do not exist for low values of the non-dimensional wave

number. This can also be interpreted as there does not exist any

SH wave if a very thin piezoelectric layer is superposed on a piezo-

magnetic half space.

• The phase-velocities are in�uenced by the depth of the layer, which

acts as a wave guide. The dispersion e�ect is more prominent for

comparatively lower values of the non-dimensional wave number.

It is expected that these results will be of some use in construction of

composite structures of piezoelectric-piezomagnetic materials.

The problem may be further extended to consider imperfect bondings

at the interface and material inhomogeneity.

Acknowledgement: We are grateful to the referee for the comments which

improved the quality of the paper.
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MaterialProperties CoFe2O4 BaTiO3 PZT − 4
c44(×109N/m2) 45.3 44 25.6
ρ(×103kg/m3) 5.3 5.7 7.5

χ11(×10−9C2/Nm2) 0.08 9.86 6.45
µ11(×10−6Ns2/C2) 157 5 5

e15(C/m
2) - 11.4 12.7

f15(N/Am) 550 - -
CSH(m/s) 2985.08 3167.28 2597.59

Table 1. Material Properties (SI units)
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Figure 2. PZT −4/CoFe2O4: Case 1 (Electrically closed,
Magnetically closed)
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Figure 3. PZT − 4/CoFe2O4: Case 2 (Electrically open,
Magnetically open)
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APPROXIMATIONS, EXISTENCE AND UNIQUENESS

OF THE INTEGRABLE LOCAL SOLUTION OF

NONLINEAR VOLTERRA TYPE HYBRID

INTEGRAL EQUATIONS
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Abstract. In this paper, we prove a couple of approximation results

for existence and uniqueness of the integrable local solutions of non-

homogeneous nonlinear Volterra type hybrid integral equations under

weaker partial compactness, partial Lipschitz and usual monotonicity

type conditions. We employ the Dhage monotone iteration method

based on the recent hybrid �xed point theorems of Dhage (2024) while

establishing our main results. Our abstract result are also illustrated

with a couple of numerical examples.

1. Introduction

Theoretical approximation results for existence and uniqueness of con-

tinuous and integrable local solutions for nonlinear di�erential and integral

equations can be obtained under usual Lipschitz condition on the nonlin-

earity or monotonicity condition blending with the existence of upper and

lower solutions of the related nonlinear problems. These results are achieved

by the applications of Banach �xed point theorem or by monotone itera-

tion method given in Ladde et al. [22] or generalized iteration method as

depicted in Hekkilä and Lakshmikantham [20]. We observe that the hy-

potheses of continuity, boundedness and monotonicity of the nonlinearity

are natural, but Lipschitzicity and existence of lower and upper solutions

are stringent conditions which are rather di�cult to hold for most of the

nonlinear equations. Therefore, it is of interest to obtain such approxima-

tion results under weaker conditions or without the requirement of upper
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Key words and phrases: Volterra integral equation; Hybrid �xed point principle; Dhage
iteration method; Approximation result; Existence and uniqueness theorem.
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and lower solutions which is the main motivation of the present paper. In

the present study we obtain approximation results for existence and unique-

ness of integrable solutions of a certain nonlinear hybrid Volterra integral

equations.

Given a closed and bounded interval J = [0, T ] in R, the set of real

numbers, we consider a nonlinear hybrid Volterra integral equation (in short

HVIE)

x(t) = q(t) + λ

∫ t

0
f(s, x(s)) ds, t ∈ J, (1.1)

where λ ∈ R+ = (0,∞), and the functions q : J :→ R, f : J × R → R
satisfy some hybrid conditions, that is, mixed conditions of �compactness,

Lipschitz and monotonicity" to be speci�ed later.

De�nition 1.1. By an integrable solution of the nonlinear HVIE (1.1)

we mean a function x ∈ L1(J,R) that satis�es the equation (1.1) de�ned

on J , where L1(J,R) is the space of Lebesgue integrable functions on J .

Furthermore, if a solution x of the HVIE (1.1) lies in the neighborhood of

a point x0 ∈ L1(J,R), we say it is a local or neighborhood solution of the

HVIE (1.1) de�ned on J .

Remark 1.2. The concept of local or neighborhood solution of the HVIE

(1.1) is di�erent from that of usual notion of local solution as mentioned

in Coddington [3]. In the terminology of Coddington [3], it is a nonlocal

solution of the HVIE (1.1) de�ned on all of J .

The HVIE (1.1) is a nonlinear Volterra integral of second type which

is very much common among the mathematicians working in the �eld of

Volterra integral equations. It is needless to say the importance of the

HVIE (1.1) and it appears in several biological and physical situations as

mentioned in Banas [1], Mydlarczyk [23], Ra�oul [24] and references therein.

The HVIE (1.1) is studied very extensively in the literature for di�erent

aspects of the solution using di�erent techniques from algebra, analysis

and topology. Here, we discuss the HVIE (1.1) for approximation of the

local solution via Dhage iteration method. In what follows, we discuss the

existence, uniqueness and stability of integrable local solution by method

of successive approximations using Dhage iteration method involving the

recent hybrid �xed point theorems of Dhage [9, 10].
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2. Preliminaries

We place the problem of HVIE (1.1) in the function space L1(J,R) of
Lebesgue integrable real-valued functions de�ned on J . Now we introduce

a norm ∥ · ∥L1 in L1(J,R) de�ned by

∥x∥L1 =

∫ T

0
|x(t)| dt, (2.1)

and an order relation ⪯ in L1(J,R) by the cone K given by

K = {x ∈ L1(J,R) | x(t) ≥ 0 a. e. t ∈ J}. (2.2)

Thus,

x ⪯ y ⇐⇒ y − x ∈ K,

or equivalently,

x ⪯ y ⇐⇒ x(t) ≤ y(t) a. e. t ∈ J. (2.3)

The details of order cones and related order relations may be found in

Deimling [4], Guo and Lakshmikantham [19] and references therein. It is

known that the Banach space L1(J,R) together with the order relations

⪯ becomes an ordered Banach space which we denote for convenience, by(
L1(J,R),K

)
. We denote the open and closed spheres centered at x0 ∈

L1(J,R) of radius r, by

Br(x0) = {x ∈ L1(J,R) | ∥x− x0∥L1 < r} = B(x, r),

and

Br[x0] = {x ∈ L1(J,R) | ∥x− x0∥L1 ≤ r} = B(x, r), (2.4)

respectively. It is clear that Br[x0] = Br(x0).

We need the following result concerning the compactness of a subset of

L1(J,R) in what follows.

Lemma 2.1 (Kolmogorov compactness criterion [18]). Let Ω ⊆ Lp(J,R),
1 ≤ p < ∞. If

(i) Ω is bounded, and

(ii) xη → x as η → 0 uniformly w.r.t. x ∈ Ω, where

xη(t) =
1

η

∫ t+η

t
x(s) ds.

Then Ω is a relatively compact subset of Lp(J,R).
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It is well-known that the �xed point as well as hybrid �xed point theo-

retic techniques are very much useful in the subject of nonlinear analysis for

dealing with the nonlinear equations qualitatively, see Granas and Dugundji

[18], Ra�oul [24] and the references therein. Here, we employ the Dhage

monotone iteration method or simply Dhage iteration method based on the

generalizations two hybrid �xed point theorems in the partially ordered ab-

stract spaces. Generalizing the hybrid �xed point theorem of Dhage [10]

and Dhage et al. [12], the present second author in [10] proved a Schauder

type hybrid �xed point theorem in a partially ordered Banach space. Before

stating this theorem, we give some preliminaries needed in the sequel.

Let
(
E, d,⪯

)
be a partially ordered metric space and let S ⊂ E. E is

called regular if a monotone nondecreasing (resp. monotone nonincreasing)

sequence {xn} in E converges to x∗, then xn ⪯ x∗ (resp. x∗ ⪯ xn) for all

n ∈ N. The metric d and the order relation ⪯ are said to be compatible

in S if a monotone sequence {xn} in S has a convergent subsequence, then

the original sequence {xn} is convergent and converges to the same limit

point. S is called a Janhavi set if d and ⪯ are compatible in it. S is called

partial bounded (resp. partially closed, partially compact) if every chain

C in S is bounded (resp. closed, compact).

A mapping T : S → S is called monotone nondecreasing (resp.

monotone nonincreasing) if x ⪯ y implies T x ⪯ T y (resp. x ⪯ y implies

T x ⪰ T y). T is monotone if it is either monotone nondereasing or mono-

tone nonincreasing. T is called partial bounded (resp. partially totally

bounded or partially precompact) if T (S) is partially bounded (resp. par-

tially totally bounded or partially precompact for partially bounded S). T

is partially continuous if {xn} ⊂ S converges to x∗ with xn ⪯ x∗, then

T xn → T x. T is called partial completely continuous if it is partially

continuous and partially totally bounded.

Now we are equipped with all the necessary details to state our required

hybrid �xed point theorems which are needed in what follows.

Theorem 2.2. Let S be a non-empty, partial closed and partial bounded

subset of a regular partially ordered Banach space
(
E, || · ∥,⪯

)
and let every

chain C in S be Janhavi set. Suppose that T : S → S is a partial completely

continuous and monotone nondecreasing operator. If there exists an element

x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then T has a �xed point ξ∗ and
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the sequence {T nx0}∞n=0 of successive iterations converges monotonically to

ξ∗.

Proof. The proof is similar to a hybrid �xed point theorem proved in Dhage

[9] with obvious modi�cations, however the details appear in Dhage [10]. □

Theorem 2.3 (Dhage [9]). Let Br[x] denote the partial closed ball centered

at x of radius r, in a regular partially ordered Banach space
(
E, || · ∥,⪯,

)
and let T : E → E be a monotone nondecreasing and partial contraction

operator with contraction constant q. If there exists an element x0 ∈ X such

that x0 ⪯ T x0 or x0 ⪰ T x0 satisfying

∥x0 − T x0∥ ≤ (1− q)r, (2.5)

for some real number r > 0, then T has a unique comparable �xed point

x∗ in Br[x0] and the sequence {xn}∞n=0 of successive iterations converges

monotonically to x∗. Furthermore, if every pair of elements in X has a

lower or upper bound, then x∗ is unique.

Remark 2.4. We note that every every pair of elements in a partially

ordered set (in short poset) (poset) (E,⪯) has a lower or upper bound

if (E,⪯) is a lattice, that is, ⪯ is a lattice order in E. In this case the

poset (E, ∥ · ∥,⪯) is called a partially lattice ordered Banach space.

There do exist several lattice partially ordered Banach spaces which are

useful for applications in nonlinear analysis. For example, every Banach

lattice is a partially lattice ordered Banach space. Notice that, L1(J,R)
is a partially lattice ordered Banach space which is a complete lattice (see

Dhage [5]). The details of the lattice structure of a Banach space appear in

the monograph Birkho� [2].

As a consequence of Remark 2.4, we obtain

Theorem 2.5. Let Br[x] denote the partial closed ball centered at x of

radius r for some real number r > 0, in a regular partially lattice ordered

Banach space
(
E, || ·∥,⪯,

)
and let T : E → E be a monotone nondecreasing

and partial contraction operator with contraction constant q. If there exists

an element x0 ∈ X such that x0 ⪯ T x0 or x0 ⪰ T x0 satisfying (2.5), then

T has a unique �xed point ξ∗ in Br[x0] and the sequence {T nx0}∞n=0 of

successive iterations converges monotonically to ξ∗.

If a Banach space X is partially ordered by an order cone K in X,

then in this case we simply say X is an ordered Banach space which
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we denote by (X,K). Similarly, if an ordered Banach space (X,K), where

the partial order ⪯ de�ned by the con K is a lattice order, then (X,K) is

called the lattice ordered Banach space. Clearly, an ordered Banach

space
(
L1(J,R),K

)
of Lebesgue integrable real-valued functions de�ned on

the closed and bounded interval J is a lattice ordered Banach space, where

the cone K is given by K = {x ∈ L1(J,R) | x ⪰ 0 a. e. on J}. The details
of the cones and their properties appear in Guo and Lakshmikantham [19].

Then, we have the following useful results concerning the ordered Banach

spaces proved in Dhage [7, 8].

Lemma 2.6 (Dhage [7, 8]). Every ordered Banach space (X,K) is regular.

Lemma 2.7 (Dhage [7, 8]). Every partially compact subset S of an ordered

Banach space (X,K) is a Janhavi set in X.

As a consequence of Lemmas 2.6 and 2.7, we obtain the following ap-

plicable hybrid �xed point theorems which we need in what follows.

Theorem 2.8. Let S be a non-empty, partially closed and partially bounded

subset of an ordered Banach space (X,K) and let T : S → S be a partially

completely continuous and monotone nondecreasing operator. If there exists

an element x0 ∈ S such that x0 ⪯ Tx0 or x0 ⪰ Tx0, then T has a �xed

point ξ∗ ∈ S and the sequence {T nx0}∞n=0 of successive iterations converges

monotonically to ξ∗.

Theorem 2.9. Let Br[x] denote the partial closed ball centered at x of

radius r for some real number r > 0, in a lattice ordered Banach space(
X,K

)
and let T : (X,K) → (X,K) be a monotone nondecreasing and

partial contraction operator with contraction constant q. If there exists an

element x0 ∈ X such that x0 ⪯ T x0 or x0 ⪰ T x0 satisfying (2.5), then

T has a unique �xed point ξ∗ in Br[x0] and the sequence {T nx0}∞n=0 of

successive iterations converges monotonically to ξ∗.

A few details of hybrid �xed point theorems and related applications

appear in Deimling [4], Dhage [6, 7, 8], Dhage and Dhage [11], Dhage et al.

[12, 14, 15], Dhage and Dhage [13] and references therein.

3. Local Approximation Results

We consider the following de�nition in the sequel.
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De�nition 3.1. A function f : J × R → R is said to be L1
R-Carathéodory

if

(i) the map t 7→ f(t, x) is measurable for each x ∈ R,
(ii) the map x 7→ f(t, x) is continuous for almost everywhere t ∈ J , and

(iii) there exists a function h ∈ L1(J,R) such that

|f(t, x)| ≤ h(t) a.e. t ∈ J, for allx ∈ R.

Lemma 3.2 (Granas and Dugundji [18]). If f(t, x) is L1
R-Carathéodory,

then the function t 7→ f(t, x(t)) is measurable and Lebesgue integrable for

each x ∈ L1(J, ,R).

Lemma 3.3 (Krasnoselkii [21]). If the function f : J × R → R is L1
R-

Carathéodory, then the superposition operator F de�ned by (Fx)(t) =

f(t, x(t)) maps continuously the space L1(J,R) into itself.

We need the following set of hypotheses in what follows.

(H0) The function q : J → R is Lebesgue integrable.

(H1) There exists a constant k > 0 such that

0 ≤ f(t, x)− f(t, y) ≤ k(x− y) a. e. t ∈ J,

for all x, y ∈ R with x ≥ y, where λ k T < 1.

(H2) The function f is L1
R-Carathéodory.

(H3) f(t, x) is nondecreasing in x for almost everywhere on J .

(H4) f(t, q(t)) ≥ 0 a. e. t ∈ J , where q is given in hypothesis (H0).

Theorem 3.4. Suppose that the hypotheses (H0), (H2), (H3) and (H4)

hold. If there exists a real number r > 0 such that λ ∥h∥L1T ≤ r, then the

HVIE (1.1) has an integrable solution x∗ in Br[x0], where, x0 ≡ q, and the

sequence {xn}∞n=0 of successive approximations de�ned by

x0(t) = q(t), t ∈ J,

xn+1(t) = q(t) + λ

∫ t

0
f(s, xn(s)) ds, t ∈ J,

 (3.1)

where n = 0, 1, . . .; is monotone nondecreasing and converges to x∗.

Proof. Set X = L1(J,R). Clearly, X is an ordered Banach space w.r.t. the

norm ∥ · ∥L1 and the order relation ⪯ given by (2.1) and (2.3) respectively.

Let x0 be an initial function on J such that x0(t) = q(t) a. e. t ∈ J and

de�ne a closed ball Br[x0] inX de�ned by (2.4), where the number r satis�es
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the inequality λ ∥h∥L1T ≤ r. Now, de�ne an operator T on Br[x0] into X

by

T x(t) = q(t) + λ

∫ t

0
f(s, x(s)) ds, t ∈ J.

Clearly, the integral and the consequently the operator T given in (3.2)

is well de�ned in view of Lemma 3.2. Then the HFIE (1.1) is transformed

into a hybrid operator equation (HOE),

T x(t) = x(t), for all t ∈ J. (3.2)

We shall show that the operator T satis�es all the conditions of Theorem

2.9 on Br[x0] in the following series of steps.

Step I: The operator T maps Br[x0] into itself.

Let x ∈ Br[x0] be arbitrary. Then,

|T x(t)− x0(t)| = λ

∣∣∣∣∫ t

0
f(s, x(s)) ds

∣∣∣∣
≤ λ

∫ t

0

∣∣f(s, x(s))∣∣ ds
≤ λ

∫ T

0
h(s) ds

= λ ∥h∥L1 .

Taking the integral on both sides from 0 to T w.r.t. t, we obtain∫ T

0

∣∣(T x− x0)(t)
∣∣ dt ≤ λ

∫ T

0
∥h∥L1 dt

= λ ∥h∥L1T.

Therefore,

∥T x− q∥L1 ≤ λ ∥h∥L1T ≤ r.

This implies that T x ∈ Br[x0] for all x ∈ Br[x0].

Step II: T is a monotone nondecreasing operator on Br[x0].

Let x, y ∈ Br[x0] be any two elements such that x ⪰ y almost every-

where on J . Then by (H3) we obtain

T x(t) = q(t) + λ

∫ t

t0

f(s, x(s)) ds

≥ q(t) + λ

∫ t

t0

f(s, y(s)) ds
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= T y(t)

for almost every t ∈ J . So, T x ⪰ T y almost everywhere on J� that is, T is

monotone nondecreasing on Br[x0].

Step III: T is a partially continuous operator on Br[x0].

Let C be a chain in Br[x0] and let {xn} be a sequence in C converg-

ing almost everywhere to a point x ∈ C. Then by Lebesgue dominated

convergence theorem, we have

lim
n→∞

T xn(t) = lim
n→∞

[
q(t) + λ

∫ t

t0

f(s, xn(s)) ds

]
= q(t) + λ lim

n→∞

∫ t

t0

f(s, xn(s)) ds

= q(t) + λ

∫ t

t0

[
lim
n→∞

f(s, xn(s))
]
ds

= q(t) + λ

∫ t

t0

f(s, x(s)) ds = T x(t)

for almost every t ∈ J . Therefore, T xn → T x pointwise on J .

Next, we show that T xn converges uniformly to T x in L!(J,R). Now,

{T xn} is a sequence of Lebesgue integrable functions, so it is also a sequence
of measurable functions on J . Similarly, T x is also a measurable function

on J . Moreover, we have

|T xn(t)| ≤ ∥q∥L1 + λ ∥h∥L1

and

|T x(t)| ≤ ∥q∥L1 + λ ∥h∥L1 .

Therefore, T xn − T x is measurable and

|T xn(t)− T x(t)| ≤ |T xn(t)|+ |T x(t)| ≤ 2
[
∥q∥L1 + λ ∥h∥L1

]
for almost every t ∈ J . Now, by de�nition of the norm ∥ · ∥l1 , we obtain

∥T xn − T x∥L1 =

∫ T

0
|T xn(t)− T x(t)| dt.
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Again, applying the Lebesgue dominated convergence theorem, we ob-

tain

lim
n→∞

∥T xn − T x∥L1 = lim
n→∞

∫ T

0
|T xn(t)− T x(t)| dt

=

∫ T

0

[
lim
n→∞

|T xn(t)− T x(t)|
]
dt

→ 0 as n → ∞.

This shows that T xn → T x uniformly. As a result T is a partially

continuous operator on Br[x0] into itself. We mention that the partial con-

tinuity of the operator T can also be obtained by giving di�erent arguments

and by using Lemma 3.3 as done in Banas [1], Emmanuel [17] and Kras-

noselsdkii [21].

Step IV: T is a partial compact operator on Br[x0] into itself.

To show T is a partial compact operator, it is enough to prove that

T (Br[x0]) is a partially compact subset of Br[x0]. Let C be a chain in

T (Br[x0]). We show that T (C) is a relatvely compact subset of Br[x0].

We apply the Kolomogorov theorem for compactness of a set in L1(J,R).
Firstly, let y ∈ T (C) be any element. Then there is an element x ∈ C such

that y = T x. Now, by hypothesis (H2), we obtain

∥y∥L1 ≤ ∥q∥L1 + λ

∫ T

0

∣∣∣∣∫ t

0
|f(s, x(s))| ds

∣∣∣∣ dt
≤ ∥q∥L1 + λ

∫ T

0

∫ t

0
h(s) ds dt

≤ ∥q∥L1 + λ∥h∥L1T,

for all y ∈ T (C). This shows that T (C) is uniformly bounded subset of

L1(J,R). Next, we show that (T x)η → T x as η → 0 uniformly for every

x ∈ C. Now,

∥(T x)η − T x∥L1 =

∫ T

0

∣∣(T x)η(t)− T x(t)
∣∣ dt

=

∫ T

0

∣∣∣∣1η
∫ t+η

t
T x(s) ds− T x(t)

∣∣∣∣ dt
≤

∫ T

0

1

η

∫ t+h

t

∣∣T x(s)− T x(t)
∣∣ ds dt. (3.3)
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Since T x ∈ L1(J,R), using the arguments that given in Swartz [25]

(also see El-Sayed and Al-Issa [16]), we have

1

η

∫ t+η

t

∣∣T x(s)− T x(t)
∣∣ ds → 0 as η → 0,

uniformly for x ∈ C. Substituting the above estimate in (3.3), we obtain

∥T x)η − T x∥L1 → 0 as η → 0,

uniformly for x ∈ C. Therefore, (T x)η → T x uniformly as η → 0 for

all x ∈ C. Now by an application of Kolomogorov theorem, we infer that

T (C) is relatively compact subset of Br[x0]. Consequently, T is a partially

compact operator on Br[x0] into itself.

Step V: The element x0 ≡ q ∈ Br[x0] satis�es the order relation

x0 ⪯ T x0 almost everywhere on J .

Since (H4) holds, one has

x0(t) = q(t) + λ

∫ t

t0

f(s, x0(s)) ds

≤ x0(t) + λ

∫ t

t0

f(s, q(t)) ds

= q(t) + λ

∫ t

t0

f(s, x0(s)) ds = T x0(t)

for almost every t ∈ J . As a result, we have x0 ⪯ T x0 almost everywhere

on J . This shows that the initial function x0 in Br[x0] serves to satisfy the

operator inequality x0 ⪯ T x0.

Thus, the operator T satis�es all the conditions of Theorem 2.8, and so

T has a �xed point x∗ in Br[x0] and the sequence {T nx0}∞n=0 of successive

iterations converges monotone nondecreasingly to x∗ almost everywhere on

J . This further implies that the HIE (1.1) and consequently the HVIE (1.1)

has a integrable local solution x∗ and the sequence {xn}∞n=0 of successive

approximations de�ned by (3.1) converges monotone nondecreasingly to x∗.

This completes the proof. □

Next, we prove an approximation result for existence and uniqueness

of the solution simultaneously under weaker form of one sided or partial

Lipschitz condition.
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Theorem 3.5. Suppose that the hypotheses (H1), (H2) and (H4) hold. Fur-

thermore, if

λ ∥h∥L1T ≤ (1− λ kT )r, λ kT < 1, (3.4)

for some real number r > 0, then the HVIE (1.1) has a unique integrable

local solution x∗ in Br[x0] de�ned on J , where x0 ≡ q almost everywhere on

J and the sequence {xn}∞n=0 of successive approximations de�ned by (3.1)

converges monotone nondecreasingly to x∗.

Proof. Set (X,K) =
(
L1(J,R),⪯

)
, which is a lattice w. r. t. the lattice

operations meet (∧) and join (∨) de�ned by x∧ y = min{x, y} and x∨ y =

max{x, y} respectively, and so every pair of elements of X has a lower and

an upper bound. Let x0 be an initial function on J such that x0(t) = q(t)

for almost everywhere t ∈ J and consider the closed ball Br[x0] centered at

x0 ∈ L1(J,R) of radius r, in the lattice ordered Banach space (X,K).

De�ne an operator T on X into X by (3.2). Clearly, T is monotone

nondecreasing on X. To see this, let x, y ∈ X be two elements such that

x ⪰ y almost everywhere on J . Then, by hypothesis (H2), we have

T x(t)− T y(t) = λ

∫ t

t0

[
f(s, x(s))− f(s, y(s))

]
ds ≥ 0,

for almost every t ∈ J . Therefore, T x ⪰ T y, and consequently T is mono-

tone nondecresing on X.

Next, we show that T is a partial contraction on X. Let x, y ∈ X be

such that x ⪰ y. Then, by hypothesis (H2), we obtain

|T x(t)− T y(t)| =

∣∣∣∣∫ t

t0

λ
[
f(s, x(s))− f(s, y(s))

]
ds

∣∣∣∣
≤ λ

∣∣∣∣∫ t

t0

k
(
x(s)− y(s)

)
ds

∣∣∣∣
≤ λ

∫ T

t0

k|x(s)− y(s)| ds

= λ k ∥x− y∥L1

for almost every t ∈ J . Taking the integral from 0 to T on both sides of the

above inequality yields

∥T x− T y∥L1 ≤ λ k T ∥x− y∥L1 , λ k T < 1,

for all comparable elements x, y ∈ X. This shows that T is a partial

contraction on X with contraction constant λ k T . Furthermore, it can be
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shown, as in the proof of Theorem 3.4, that the element x0 ∈ Br[x0] satis�es

the relation x0 ⪯ T x0 in view of hypothesis (H4). Finally, by hypothesis

(H1), one has

|x0(t)− T x0(t)| = |q(t)− T q(t)| =
∣∣∣∣λ ∫ t

0
f(s, q(s)) ds

∣∣∣∣
≤ λ

∫ T

0
|f(s, q(s))| ds

≤ λ

∫ T

0
h(s) ds = λ ∥h∥L1

for almost every t ∈ J . Now, from condition (3.4), we get

∥x0 − T x0∥L1 =

∫ T

0
|x0(t)− T x0(t)| dt

≤
∫ T

0
λ ∥h∥L1 dt

= λ ∥h∥L1T ≤ (1− λ k T )r,

which shows that the condition (2.5) of Theorem 2.9 is satis�ed. Hence, T
has a unique �xed point x∗ in Br[x0] and the sequence {T nx0}∞n=0 of suc-

cessive iterations converges monotone nondecreasingly to x∗. This further

implies that the HIE (3.2) and consequently the HVIE (1.1) has a unique

integrable local solution x∗ de�ned on J and the sequence {xn}∞n=0 of succes-

sive approximations de�ned by (3.1) converges monotone nondecreasingly

to x∗. This completes the proof. □

Remark 3.6. The conclusion of Theorems 3.4 and 3.5 also remains true if

we replace the hypothesis (H4) with the following one.

(H′
4) The function f satis�es inequality f(t, q(t)) ≤ 0 a. e. t ∈ J , where

the function q given in hypothesis (H1).

In this case, the HVIE (1.1) has a integrable local solution x∗ de�ned on J

and the sequence {xn}∞n=0 of successive approximations de�ned by (3.1) is

monotone nonincreasing and converges to x∗.

Remark 3.7. If the initial condition in the equation (1.1) is such that

q(t) > 0 a. e. t ∈ J , then under the conditions of Theorem 3.4, the HVIE

(1.1) has a integrable local positive solution x∗ de�ned on J and the se-

quence {xn}∞n=0 of successive approximations de�ned by (3.1) converges

monotone nondecreasingly to the positive solution x∗. Similarly, under the



APPROXIMATING INTEGRABLE LOCAL SOLUTIONS 87

conditions of Theorem 3.5, the HVIE (1.1) has a unique integrable local

positive solution x∗ de�ned on J and the sequence {xn}∞n=0 of successive

approximations de�ned by (3.1) converges monotone nondecreasingly to x∗.

Example 3.8. Let J = [0, 1] ⊂ R and consider the HVIE

x(t) = t2 +

∫ t

0
tanhx(s) ds, t ∈ [0, 1]. (3.5)

Here, the functions q(t) = t2 = x0(t) and f(t, x) = tanhx satisfy all the

hypotheses of Theorem 3.4 with r = 1. Hence, the HVIE (3.5) has a

integrable nonnegative local solution x∗ in B1[x0] and the sequence {xn}∞n=0

of successive approximations de�ned by

x0(t) = t2, t ∈ [0, 1],

xn+1(t) = t2 +

∫ t

0
tanhxn(s) ds, t ∈ [0, 1],

for n = 0, 1, 2, . . . , is monotone nondeceasing and converges to x∗.

Example 3.9. Given J = [0, 1] ⊂ R, consider the HVIE

x(t) =
t+ 1

2
+

1

2

∫ t

0
tan−1 x(s) ds, t ∈ [0, 1]. (3.6)

Here, the functions q(t) =
t+ 1

2
= x0(t) and f(t, x) = tan−1 x satisfy all

the hypotheses of Theorem 3.5 with r = 4. Hence, the HVIE (3.5) has

a unique integrable positive local solution x∗ in B4[x0] and the sequence

{xn}∞n=0 of successive approximations de�ned by

x0(t) =
t+ 1

2
, t ∈ [0, 1],

xn+1(t) =
t+ 1

2
+

1

2

∫ t

0
tan−1 xn(s) ds, t ∈ [0, 1],

for n = 0, 1, 2, . . . , is monotone nondeceasing and converges to x∗.

Remark 3.10. We observe that the existence and uniqueness results,

Theroems 3.4 and 3.5 of this paper may be extended to the nonlinear

Volterra type hybrid integral equation,

x(t) = q(t) + λ

∫ t

0
k(t, s)f(s, x(s)) ds, t ∈ J, (3.7)

with appropriate modi�cations. In this case the desired approximation re-

sults for existence and uniqueness theorems are obtained under additional
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assumption that the kernel function k : J ×J → R is L1
R-Carathéodory and

nonnegative. The details of such criteria appears in Banas [1], Emmanuel

[17] and references therein.

4. The Comparison

We observe that the existence of solutions of the HVIE (1.1) can also

be obtained by an application of topological Schauder �xed point princi-

ple under the hypothesis (H0) and (H2), but in that case we do not get

any sequence of successive approximations that converges to the solution.

Again, we can not apply analytical or geometric Banach contraction map-

ping principle to the problem (3.1) under the considered hypotheses (H0),

(H1) and (H3) in order to get the desired conclusion, because here the

nonlinear function f does not satisfy the usual Lipschitz condition on the

domain J × R. Similarly, since L1(J,R) is a complete lattice w.r.t. the

partial ⪯, we can apply algebraic Tarski �xed point theorem [26] or its ex-

tension obtained in Dhage [5] to HVIE (1.1) under the hypotheses (H0),

(H1) and (H3) for proving the existence of solution, but in that case also

we do not get any sequence of successive approximations that converges

to the solution. Therefore, all these arguments show that our hybrid �xed

point principles, Theorems 2.8 and 2.9, have more advantages than other

classical �xed point principles to get more information about the solution

of nonlinear equations in the subject of nonlinear analysis. Finally, while

concluding this paper, we mention that the integral equations (1.1) consid-

ered in this paper is very simple, however the method can be applied to

other more complex nonlinear Volterra or Fredholm type integral equations

involving integer or Riemann-Louville type fractional order of integration.

The research in this direction forms the further scope for the work and some

of the results along this line will be reported elsewhere.

References

[1] J. Banas, Integrable solutions of Hammerstein and Urysohn integral equations, J.

Austral. Math. Soc. (series A), 46 (1969), 61-68.

[2] G. Birkho�, Lattice Theory, Amer. Math. Soc. Coll. Publ. New York 1967.

[3] E. A. Coddington, An Introduction to Ordinary Di�erential Equations, Dover Pub-

lications Inc. New York, 1989.

[4] K. Deimling, Nonlinear Functional Analysis, Springer Verlag 1985.

[5] B. C. Dhage, An extension of lattice �xed point theorem and its applications, Pure

Appl. Math. Sci, 25 (1987), 37-42.



APPROXIMATING INTEGRABLE LOCAL SOLUTIONS 89

[6] B. C. Dhage, Partially condensing mappings in partially ordered normed linear

spaces and applications to functional integral equations, Tamkang J. Math., 45 (4)

(2014), 397-427.

[7] B. C. Dhage, A coupled hybrid �xed point theorem for sum of two mixed monotone

coupled operators in a partially ordered Banach space with applications, Tamkang

J. Math., 50 (1) (2019), 1-36.

[8] B. C. Dhage, Coupled and mixed coupled hybrid �xed point principles in a partially

ordered Banach algebra and PBVPs of nonlinear coupled quadratic di�erential equa-

tions, Di�er. Equ. Appl., 11 (1) (2019), 1-85.

[9] B. C. Dhage, A Schauder type hybrid �xed point theorem in a partially ordered

metric space with applications to nonlinear functional integral equations, Jñ	an	abha,

52 (2) (2022), 168-181.

[10] B. C. Dhage, Nonlinear partial completely continuous operators in a partially or-

dered Banach space and nonlinear hyperbolic partial di�erential equations, Malaya

J. Mat., 12 (2024) to appear.

[11] B. C. Dhage, S. B. Dhage, Approximating solutions of nonlinear �rst order ordinary

di�erential equations, GJMS Special issue for Recent Advances in Mathematical Sci-

ences and Applications-13, GJMS, 2 (2) (2013), 25-35.

[12] B. C. Dhage, J. B. Dhage, S.B. Dhage, Approximating existence and uniqueness of

solution to a nonlinear IVP of �rst order ordinary iterative di�erential equations,

Nonlinear Studies, 29 (1) (2022), 303-314.

[13] J. B. Dhage, B. C. Dhage, Approximating local solution of an IVP of nonlinear

�rst order ordinary hybrid di�erential equations, Nonlinear Studies 30 (3) (2023),

721-732.

[14] J. B. Dhage, S. B. Dhage, B. C. Dhage, Approximation results for PBVPs of non-

linear �rst order ordinary functional di�erential equations in a closed subset of the

Banach space, Malaya Journal of Matematik, vol. 11, no. S, Oct. 2023, pp. 197-207.

[15] J. B. Dhage, S. B. Dhage, B. C. Dhage, An algorithmic approach to local solution of

the nonlinear higher order ordinary hybrid di�erential equations, Jñ	an	abha 54 (1)

(2024), 29-40.

[16] A. M. A. El-Sayed, Sh. M. Al-Issa, Existence of integrable solutions for integrodi�er-

ential inclusions of fractional order: coupled system approach, J. Nonlinear Sciences

Appl., 13 (2020), 180-186.

[17] G. Emmanuel, Integrable solutions of a functional-integral equations, J. Integral

Equ. Appl., 4 (1) (1992), 89-94.

[18] A. Granas, J. Dugundji, Fixed Point Theory, Springer 2003.

[19] D. Gua, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic

Press, New York, London 1988.

[20] S. Heikkilä, V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous

Nonlinear Di�erential Equations, Marcel Dekker inc., New York, 1994.

[21] M. K. Krasnoselskii, On continuity of superposition operator Fx(t) = f(t, x(t)),

DOkl Akad Nauk SSSR 77 (1951), 185-188 (In Russian).



90 J. B. DHAGE AND B. C. DHAGE

[22] G. S. Ladde, V. Lakshmikantham, V, A. S. Vatsala, Monotone Iterative Techniques

for Nonlinear Di�erential Equations, Pitman, Boston, 1985.

[23] W. Mydlarczyk, A system of Volterra integral equations with blowing up solutions,

Colloq. Math., 146 (2017), 99�110.

[24] Y. Ra�oul, Classi�cation of positive solutions of nonlinear systems of Volterra inte-

gral equations, Ann. Funct. Anal., 2 (2011), 34-41.

[25] C. Swartz, Measure, Integration and Function Spaces, World Scienti�c Publishing

Co. River Edge 1999.

[26] A. Tarski, A lattice theoretical �xed point theorem and its applications, Paci�c J.

Math., 5 (1965), 285-309.

Jahavi B. Dhage

Kasubai, Gurukul Colony, Thodga Road

Ahmedpur - 413515, Dist. Latur

Maharashtra, India

E-mail: jbdhage@gmail.com

Bapurao C. Dhage

Kasubai, Gurukul Colony, Thodga Road

Ahmedpur - 413515, Dist. Latur

Maharashtra, India

E-mail: bcdhage@gmail.com



The Mathematics Student ISSN: 0025-5742

Vol. 92, Nos. 3-4, July-December (2024), 91�105

, , , , .

SPECTRAL DECOMPOSITION OF SOME

TRIDIAGONAL MATRICES BY SECOND KIND OF

CHEBYSHEV POLYNOMIALS

FAUZIA SHAHEEN AND NAJMUDDIN AHMAD

(Received : 30 - 10 - 2023 ; Revised : 14 - 05 - 2024)

Abstract. In this research, a particular kind of large and sparse

Toeplitz matrix based on the arrangement of the entries of a tridiago-

nal matrix has been taken into consideration. Since we can directly re-

late the determinant of the corresponding tridiagonal matrix (with the

same diagonal, subdiagonal, and superdiagonal entries) to Chebyshev

polynomials. Utilizing this strategy, we have generalized the problem

discussed by J.Rimes [16, 15] and Jesús Gutiérrez-Gutiérrez [10, 11].

The characteristic equation of a tridiagonal matrix, all eigenvalues, and

associated eigenvectors along with the basic properties such as deter-

minants, and the trace have been discussed in terms of the second kind

of Chebyshev polynomials. At last, all the results have been applied

successfully to the justifying examples.

1. Introduction

Tridiagonal matrices are commonly encountered in a wide range of

Mathematical and Engineering applications such as solving ordinary and

partial di�erential equations [8, 21], time series analysis [13], discrete ill-

posed problems [12] and some other problems [9, 20, 3, 14, 1, 2, 18, 19, 4, 6]

and [5].

Some authors have already used various Chebyshev polynomials on toeplitz

matrices, based on the arrangement of sub-diagonal, diagonal, and super-

diagonal elements. [22, 17, 7].

2010 Mathematics Subject Classi�cation: 65F5, 65F15, 65F40, 65F50.
Key words and phrases: Spectral decomposition, Chebyshev polynomial, Eigen values,
Eigen vectors, Toeplitz matrix

© Indian Mathematical Society, 2024 .
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J. Rimes [16, 15] has applied in their research article the second kind

of Chebyshev polynomials to tridiagonal matrices with elements -1; 0; 0;

. . . , 0, 1 in principal and 1, 1, 1, . . . , 1 in neighbouring diago-

nals. Jesus Gutierrez-Gutierrez [10, 11] further derived a general expression

for the entries of the qth power of the n × n complex tridiagonal matrix,

tridiagonaln(a1; a0; a1) for all n ∈ N , in terms of the second kind Cheby-

shev polynomials.

In this research article, we have discussed the most general case of n×n

matrices with elements γ + β, γ + β, β, ..., β, γ + β in principal and

p, p, p, ..., p in sub diagonal and q, q, q, ..., q in super diagonal (p, q, β

and γ are all real) for �nding expressions for eigenvalues and associated

eigenvectors.

The study is organized as follows: In the �rst section, we introduced the

Toeplitz matrix that we are going to discuss in this research article. Pre-

liminary de�nitions of Chebyshev polynomials are provided in the second

part, along with some common results and lemmas. In the third section, we

arrived at several results regarding eigenvalues, associated eigenvectors, and

some fundamental properties of the given matrix. We have also discussed

how to apply the results to various problems.

In this study, we take into account the nth order near-Toeplitz tridiag-

onal matrices with the same precise perturbations in the �rst, second, and

last main diagonal entries as follows:

P =



γ + β q

p γ + β q

p β q
. . .

. . .
. . .

p β q

p γ + β


. (1.1)

2. Notation and Preliminaries

2.1. Chebyshev Polynomials. The Chebyshev polynomials Tn(a), Un(a), Vn(a)

and Wn(a) of the �rst, second, third and fourth kinds are polynomials in x
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of degree n de�ned respectively by

Tn(a) = cosnϕ,

Un(a) =
sin(n+ 1)ϕ

sinϕ
,

Vn(a) =
cos

(
n+ 1

2

)
ϕ

cos ϕ
2

,

Wn(a) =
sin

(
n+ 1

2

)
ϕ

sin ϕ
2

,

when a = cosϕ, −1 ≤ a ≤ 1.

Lemma 2.1. The four kinds of Chebyshev polynomials satisfy the same

recurrence relation:

Xn(a) = 2aXn−1(a)−Xn−2(a),

with X0(a) = 1 in each case and X1(a) = a, 2a, 2a − 1, 2a + 1 respectively.

Furthermore, three relationships can be derived from the above

2Tn(a) = Un(a)− Un−2(a),

Vn(a) = Un(a)− Un−1(a),

Wn(a) = Un(a) + Un−1(a).

Un(a) can be expressed by the determinant, namely

U0(a) = 1, U1(a) = 2a, and U2(a) =

∣∣∣∣∣ 2a c

b 2a

∣∣∣∣∣ = 2aU1(a)− U0(a),

Un(a) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2a c

b 2a
. . .

. . .
. . .

. . .

. . . 2a c

b 2a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2aUn−1(a)− Un−2(a),

where bc = 1.

3. Spectral Decomposition

Lemma 3.1. If P is a tridiagonal matrix of the form (1.1), then the trace

of P is

trP = nβ + 3γ,
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the determinant of P is

detP = γnUn−1

(
β

2γ

)
+ (γ + β)2(γ)n−2Un−2

(
β

2γ

)
, (3.1)

and characteristic equation of P is

det(P − λI) = ((γ + β)− λ)

[
((γ + β)− λ)2γn−3Un−3

(
β − λ

2γ

)
− 2((γ + β)− λ)γn−2Un−4

(
β − λ

2γ

)
+ γn−1Un−5

(
β − λ

2γ

)]
− ((γ + β)− λ)γn−1Un−3

(
β − λ

2γ

)
+ γnUn−4

(
β − λ

2γ

)
. (3.2)

Proof. The trace of P is equal to the sum of all the diagonal entries, so

obviously we have trP = nβ + 3γ from the form of P . Let's consider a

tridiagonal matrix with constant diagonal entries as

An =



β q

p β q

p β q
. . .

. . .
. . .

p β q

p β


.

This determinant will be equivalent to the determinant obtained by ex-

panding the Chebyshev polynomial when the condition that the product of

subdiagonal and superdiagonal will be equal to one. So on modi�cation of

the terms of An, we will get

An = (
√
pq)n



β√
pq

√
q
p√

p
q

β√
pq

√
q
p√

p
q

β√
pq

√
q
p

. . .
. . .

. . .√
p
q

β√
pq

√
q
p√

p
q

β√
pq


,

detAn = (
√
pq)nUn

(
β

2
√
pq

)
.



SPECTRAL DECOMP. OF TRIDIAG. MATRICES BY 2ND OF CHEB. POLYS. 95

Now solving the determinant of P we have

detP = (γ + β)

[
(γ + β)2 detAn−3 − 2(γ + β)pq detAn−4

+ p2q2 detAn−5

]
− pq(γ + β) detAn−3 + p2q2 detAn−4,

= (γ + β)

[
(γ + β)2(

√
pq)n−3Un−3

(
β

2
√
pq

)
− 2(γ + β)pq(

√
pq)n−4Un−4

(
β

2
√
pq

)
+ p2q2(

√
pq)n−5Un−5

(
β

2
√
pq

)]
− pq(γ + β)(

√
pq)n−3Un−3

(
β

2
√
pq

)
+ p2q2(

√
pq)n−4Un−4

(
β

2
√
pq

)
,

= (γ + β)

[
(γ + β)2(γ)n−3Un−3

(
β

2γ

)
− 2(γ + β)(γ)n−2Un−4

(
β

2γ

)
+ (γ)n−1Un−5

(
β

2γ

)]
− (γ + β)(γ)n−1Un−3

(
β

2γ

)
+ (γ)nUn−4

(
β

2γ

)
,

detP = γnUn−1

(
β

2γ

)
+ (γ + β)2γn−2Un−2

(
β

2γ

)
.

Similar to the determinant of P the characteristic polynomial will be

det(P − λI) = ((γ + β)− λ)

[
((γ + β)− λ)2 detAn−3

− 2pq((γ + β)− λ) detAn−4 + p2q2 detAn−5

]
− pq((γ + β)− λ) detAn−3 + p2q2 detAn−4,
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= ((γ + β)− λ)

[
((γ + β)− λ)2γn−3Un−3

(
β − λ

2γ

)
− 2((γ + β)− λ)γn−2Un−4

(
β − λ

2γ

)
+ γn−1Un−5

(
β − λ

2γ

)]
− ((γ + β)− λ)γn−1Un−3

(
β − λ

2γ

)
+ γnUn−4

(
β − λ

2γ

)
.

□

It is generally known that the corresponding eigenvectors of P can be

obtained by solving the equation

(P − λI)x = 0, x ̸= 0 (3.3)

In which the coe�cient matrix (P − λI) is non symmetric. It is more

convenient to solve the equation system if we change the coe�cient matrix

into a symmetric matrix. Let D = diag(d0, d1 , ..., dn−1) and dk =
(
p
q

)k/2
.

Suppose y solves equation

(P − λI)Dy = 0, (3.4)

which can be deduced from the linear system of equations with the sym-

metric tridiagonal matrix, then x = Dy is an eigenvector of P .

Let ai = cos iπ
n , i = 1, 2, ..., n− 1.

When γ = −√
pq, the equation (3.4) can be written as(

β − λ

γ
− 1

)
y1 + y2 = 0,

y1 +

(
β − λ

γ
− 1

)
y2 + y3 = 0,

y2 +

(
β − λ

γ

)
y3 + y4 = 0,

yn−2 +

(
β − λ

γ

)
yn−1 + yn = 0,

yn−1 +

(
β − λ

γ
− 1

)
yn = 0.

Solving the above equations, we have some solutions

y(i) = [y1, y2, y3, ..., yn].
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Hence, solutions of equation (3.3), the eigenvectors of P with γ = −√
pq,

are

x(i) = [d0y1, d1y2, d2y3, ..., dn−1yn]
T ,

When γ =
√
pq, the equation (3.4) can be written as(

β − λ

γ
+ 1

)
y1 + y2 = 0,

y1 +

(
β − λ

γ
+ 1

)
y2 + y3 = 0,

y2 +

(
β − λ

γ

)
y3 + y4 = 0,

yn−2 +

(
β − λ

γ

)
yn−1 + yn = 0,

yn−1 +

(
β − λ

γ
+ 1

)
yn = 0.

The system has solutions

y(i) = [y1, y2, y3, ..., yn].

Therefore, the solutions of equation (3.3) are

x(i) = [d0y1, d1y2, d2y3, ..., dn−1yn]
T ,

which are the eigenvectors of P with γ =
√
pq.

Lemma 3.2. Using the above results of the eigenvalues and the correspond-

ing eigenvectors of P , we give the spectral decomposition of P .

Note that E = diag(λ1, λ2, ..., λn) and λ1, ..., λn are eigenvalues of P .

If P has n linearly independent eigenvectors x(1), x(2), ..., x(n), form a

non singular matrix X with them as columns, then P = XEX−1, where

E =

 λ1

. . .

λn

 .

4. Examples

Example 4.1. Let's consider a tridiagonal square matrix of order 5 of the

form (1.1) and applied the results for eigenvalues and eigenvectors which
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we have obtained as above.

P =


1 1

1 1 1

1 0 1

1 0 1

1 1

 .

The Trace of the matrix P is

tr(P ) = nβ + 3γ = 3.

The determinant of P is

detP = U4

(
0

2

)
+ U3

(
0

2

)
,

detP =
4∏

i=1

(
2 cos

iπ

5

)
+

3∏
i=1

(
2 cos

iπ

4

)
,

detP = 1.

Eigenvalues are given by the following relation

det(P − λI) = (1− λ)

[
(1− λ)2γn−3Un−3

(
−λ

2

)
− 2(1− λ)γn−2Un−4

(
−λ

2

)
+ γn−1Un−5

(
−λ

2

)]
− (1− λ)γn−1Un−3

(
−λ

2

)
+ γnUn−4

(
−λ

2

)
= 0,(

1− λ+ 2λ2 − λ3

)
Un−1

(
−λ

2

)
−
(
1− 2λ+ λ2

)
Un

(
−λ

2

)
= 0,

λ

[
2Un−2

(
−λ

2

)
+ Un−3

(
−λ

2

)
+ Un−1

(
−λ

2

)]
−
[
Un−2

(
−λ

2

)
+ Un−1

(
−λ

2

)]
= 0,

λ =

Un−2

(
−λ

2

)
+ Un−1

(
−λ

2

)
Un−3

(
−λ

2

)
+ 2Un−2

(
−λ

2

)
+ Un−1

(
−λ

2

) .
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And corresponding eigenvectors are

x(i) =


1

(λ− 1)

(λ2 − 2λ)

(λ3 − 2λ2 − λ+ 1)

(λ4 − 2λ3 − 2λ2 + 3λ)

 ,

where

λ =

U3

(
−λ

2

)
+ U4

(
−λ

2

)
U2

(
−λ

2

)
+ 2U3

(
−λ

2

)
+ U4

(
−λ

2

) .

And

U2

(
−λ

2

)
=

2∏
i=1

(
−λ+ 2 cos

iπ

3

)
, i = 1, 2, 3, 4, 5

U3

(
−λ

2

)
=

3∏
i=1

(
−λ+ 2 cos

iπ

4

)
, i = 1, 2, 3, 4, 5

U4

(
−λ

2

)
=

4∏
i=1

(
−λ+ 2 cos

iπ

3

)
, i = 1, 2, 3, 4, 5.

Example 4.2. Another tridiagonal square matrix has been subjected to

the same applications, and the �ndings are as follows.

P =


5 8

2 5 8

2 1 8

2 1 8

2 5

 .

The Trace of the matrix P is

trP = nβ + 3γ = 17.

The determinant of P is

detP = (4)5U4

(
1

8

)
+ 25(4)3U3

(
1

8

)
,

detP = 4

4∏
i=1

(
1 + 8 cos

iπ

5

)
+ 25

3∏
i=1

(
1 + 8 cos

iπ

5

)
, i = 1, 2, 3, 4, 5

detP = 61.
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Eigenvalues are given by the following characteristic equation

det(P − λI) = (5− λ)

[
(5− λ)2γn−3Un−3

(
1− λ

8

)
− 2(5− λ)γn−2Un−4

(
1− λ

8

)
+ γn−1Un−5

(
1− λ

8

)]
− (5− λ)γn−1Un−3

(
1− λ

8

)
+ γnUn−4

(
1− λ

8

)
= 0,

(5− λ)

[
(5− λ)242Un−3

(
1− λ

8

)
− 2(5− λ)43Un−4

(
1− λ

8

)
+ 44Un−5

(
1− λ

8

)]
− (5− λ)44Un−3

(
1− λ

8

)
+ 45Un−4

(
1− λ

8

)
= 0,

1424U4

(
1− λ

8

)
− 1600Un

(
1− λ

8

)
− 560λUn−1

(
1− λ

8

)
+ 640λUn

(
1− λ

8

)
+ 176λ2Un−1

(
1− λ

8

)
− 16λ3Un−1

(
1− λ

8

)
− 64λ2Un

(
1− λ

8

)
= 0,

λ

[
6Un−1

(
1− λ

8

)
+ 16Un−3

(
1− λ

8

)
+ 36Un−2

(
1− λ

8

)]
−
[
54Un−1

(
1− λ

8

)
+ 140Un−2

(
1− λ

8

)
+ 40Un

(
1− λ

8

)]
= 0,

λ =
27Un−1

(
1−λ
8

)
+ 70Un−2

(
1−λ
8

)
+ 20Un

(
1−λ
8

)
3Un−1

(
1−λ
8

)
+ 8Un−3

(
1−λ
8

)
+ 18Un−2

(
1−λ
8

) .
And corresponding eigen vectors are

x(i) =



(14)
0

(14)
1
2

(
λ−5
4

)
(14)

1
(
λ2−10λ+9

16

)
(14)

3
2

(
λ3−11λ2+3λ+71

64

)
(14)

2
(
λ4−12λ3−2λ2+228λ−215

256

)


,
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where

λ =

27U4

(
1− λ

8

)
+ 70U3

(
1− λ

8

)
+ 20U5

(
1− λ

8

)
3U4

(
1− λ

8

)
+ 8U2

(
1− λ

8

)
+ 18U3

(
1− λ

8

) .

And

U2

(
1− λ

8

)
=

1

42

2∏
i=1

(
1− λ+ 8 cos

iπ

3

)
, i = 1, 2, 3, 4, 5

U3

(
1− λ

8

)
=

1

43

3∏
i=1

(
1− λ+ 8 cos

iπ

4

)
, i = 1, 2, 3, 4, 5

U4

(
1− λ

8

)
=

1

44

4∏
i=1

(
1− λ+ 8 cos

iπ

5

)
, i = 1, 2, 3, 4, 5

U5

(
1− λ

8

)
=

1

45

5∏
i=1

(
1− λ+ 8 cos

iπ

6

)
, i = 1, 2, 3, 4, 5.

Example 4.3. Let's consider the third example as follows:

P =


−1 1

1 −1 1

1 0 1

1 0 1

1 −1

 .

The Trace of the matrix P is

trP = nβ + 3γ = −3.

The determinant of P is

detP = (−1)5U4

(
0

−2

)
+ (−1)3U3

(
0

−2

)
,

detP = −1
4∏

i=1

(
−2 cos

iπ

5

)
+

3∏
i=1

(
−2 cos

iπ

4

)
= −1.
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Eigenvalues are given by the following characteristic equation

(−1− λ)

[
(−1− λ)2(−1)n−3Un−3

(
λ

2

)
− 2(−1− λ)(−1)n−2Un−4

(
λ

2

)
+ (−1)n−1Un−5

(
λ

2

)]
− (−1− λ)(−1)n−1Un−3

(
λ

2

)
+ (−1)nUn−4

(
λ

2

)
= 0,

Un

(
λ

2

)
− Un−1

(
λ

2

)
− λUn−1

(
λ

2

)
+ 2λUn

(
λ

2

)
− 2λ2Un−1

(
λ

2

)
− λ3Un−1

(
λ

2

)
+ λ2Un

(
λ

2

)
= 0,

(
3Un−1

(
λ

2

)
+ Un−2

(
λ

2

)
+ 2Un−3

(
λ

2

))
+ λ

(
Un−1

(
λ

2

)
+ Un−3

(
λ

2

))
= 0,

λ = −
3Un−1

(
λ
2

)
+ Un−2

(
λ
2

)
+ 2Un−3

(
λ
2

)
Un−3

(
λ
2

)
+ Un−1

(
λ
2

) .

And corresponding eigenvectors are

x(i) =


1

(1 + λ)

(λ2 + 2λ)

(λ3 + 2λ2 − λ− 1)

(λ4 + 2λ3 − 2λ2 − 3λ)

 ,

where

λ =
−3U4

(
λ
2

)
+ U3

(
λ
2

)
+ 2U2

(
λ
2

)
U2

(
λ
2

)
+ U4

(
λ
2

) .

And

U2

(
λ

2

)
=

1

(−1)2

2∏
i=1

(
λ+ 2 cos

iπ

3

)
, i = 1, 2, 3, 4, 5

U3

(
λ

2

)
=

1

(−1)3

3∏
i=1

(
λ+ 2 cos

iπ

4

)
, i = 1, 2, 3, 4, 5

U4

(
λ

2

)
=

1

(−1)4

4∏
i=1

(
λ+ 2 cos

iπ

5

)
, i = 1, 2, 3, 4, 5.
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5. Conclusion

In this research, a formulation for all the eigenvalues and corresponding

eigenvectors of the n×n tridiagonal matrix P in terms of the second kind of

Chebyshev polynomials has been presented. This technique is very simple

and quick to apply because this study has explained all the eigenvalues and

associated eigenvectors at once for very large and sparse matrices. Success-

ful implementation of results to three arbitrary matrices has been given.

Further, the study can also show how the mth power of a triangular ma-

trix can be used for calculating the inverse and solution of the tridiagonal

matrices.
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Abstract. This paper is a continuation of a previous one (Math. Stu-

dent 93(1-2):132-137, 2024) in which an interesting sum considered by

Nimbran has been solved. In the present paper we solve another in-

teresting sum considered by Nimbran, providing explicit closed-form

expression for the following series.

∞∑
n=1

Hn

(
2n
n

)
(2n+ 1)2 22n

.

The key ingredients for obtaining our in�nite series result (1.1) are

some of the di�cult de�nite integral formulas due to K. S. Kölbig and

an obscure in�nite series due to Khristo N. Boyadzhiev.

1. Introduction

Continuing the previous paper [3], which was devoted to solving an

interesting sum posed by Nimbran in [4, p. 134], we discuss here another

interesting sum considered by Nimbran in [4, p. 134].

Amrik Singh Nimbran left the following problem of evaluating a series

involving classical harmonic number and central binomial coe�cient as an

interesting sum in [4, p. 134], which we will provide a solution to in this

paper:

∞∑
n=1

Hn

(
2n
n

)
(2n+ 1)2 22n

(1.1)
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binomial coe�cients, Catalan's constant, in�nite summation formulas
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We shall recall notation from [2], writing

G := ℑ
(
Li3

(
i+ 1

2

))
to denote the Catalan-like constant explored in [2], [5], letting

G =

∞∑
n=1

(−1)n+1

(2n− 1)2
denote the �original� Catalan's constant.

Throughout, we use the same notations and de�nitions as [3].

To evaluate (1.1), we shall establish some lemmas.

Lemma 1.1. Let n > −1

2
. The following equality holds:∫ 1

0
x2n ln (x) dx = − 1

(2n+ 1)2
.

Proof. We have, using integration by parts, that

∫ 1

0
x2n ln (x) dx =

[
x2n+1 ln (x)

2n+ 1

]1
0

−
∫ 1

0

x2n

2n+ 1
dx = − 1

(2n+ 1)2
.

□

Lemma 1.2. The following identity holds:

∞∑
n=1

Hn

(
2n

n

)(
x2

4

)n

=
2√

1− x2
ln

(
1 +

√
1− x2

2
√
1− x2

)
.

Proof. In a wonderful paper [1, Thm. 1, p. 2], Khristo N. Boyadzhiev had

evaluated the following generating function involving classical harmonic

number and central binomial coe�cient:

∞∑
n=1

Hn

(
2n

n

)
xn =

2√
1− 4x

ln

(
1 +

√
1− 4x

2
√
1− 4x

)
, x ∈

[
−1

4
,
1

4

)
. (1.2)

Replacing x with
x2

4
on both sides of (1.2), gives us the desired result.

□

Lemma 1.3. The following equality holds:∫ 1

0

ln(t)

1 + t2
dt = −G.
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Proof.

∫ 1

0

ln(t)

1 + t2
dt =

∫ 1

0
ln(t)

( ∞∑
i=0

(−1)i t2i

)
dt

=

∞∑
i=0

(−1)i
(∫ 1

0
t2i ln(t)dt

)

= −
∞∑
i=0

(−1)i

(2i+ 1)2
= −G.

□

Lemma 1.4. The following equality holds:

∫ 1

0

ln

(
1 + t2

t

)
1 + t2

dt =
π

2
ln 2.

Proof. We make the substitution: t = tan y so that dt =
(
1 + t2

)
dy

Then,

∫ 1

0

ln

(
1 + t2

t

)
1 + t2

dt =

∫ π

4

0
(ln 2− ln(sin 2y)) dy

=
π

4
ln 2−

∫ π

4

0
ln(sin 2y)dy

Now, in the last de�nite integral on the right side, we make the substi-

tution: 2y = a so that da = 2dy

Then,

∫ 1

0

ln

(
1 + t2

t

)
1 + t2

dt =
π

4
ln 2− 1

2

∫ π

2

0
ln(sin a)da.

In this equation, due to symmetry, recognizing that∫ π

2

0
ln (sin a) da =

∫ π

2

0
ln (cos a) da, we conclude:

∫ 1

0

ln

(
1 + t2

t

)
1 + t2

dt =
π

4
ln 2− 1

2

∫ π

2

0
ln(cos a)da.
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Using the derivative of the Euler's beta function and the Leibniz formula

for the di�erentiation of products, K.S.Kölbig [6, p. 25], had evaluated the

de�nite integral

∫ π

2

0
ln (cos a) da = −π

2
ln 2.

giving us that the following equality holds:

∫ 1

0

ln

(
1 + t2

t

)
1 + t2

dt =
π

4
ln 2− 1

2

(
−π

2
ln 2
)
=

π

2
ln 2.

□

Lemma 1.5. The following equality holds:∫ 1

0

ln(1 + t2)

1 + t2
dt =

π

2
ln 2−G.

Proof.

∫ 1

0

ln(1 + t2)

1 + t2
dt =

∫ 1

0

ln(t)

1 + t2
dt+

∫ 1

0

ln

(
1 + t2

t

)
1 + t2

dt = −G+
π

2
ln 2.

□

Lemma 1.6. The following equality holds:∫ π

4

0
ln2 (sin z) dz =

9π

32
ln2 2 +

G ln 2

2
+

23π

64
ζ(2)− G.

Proof. The proof is detailed in [2, Proof of Lemma1.1].

□

Lemma 1.7. The following equality holds:∫ 1

0

ln2
(
1 + t2

)
1 + t2

dt = 4G − 2G ln 2− 7π

16
ζ(2) +

7π

8
ln2 2.

Proof. In the recent article [5, Equation (46)], Campbell, Levrie and Nim-

bran have evaluated the following de�nite integral formula:

∫ 1

0

ln2
(
1 + t2

)
1 + t2

dt = πζ(2) + 2π ln2 (2)− 4

∫ π

4

0
ln2 (sin z) dz (1.3)

Employing Lemma1.6 on right side of (1.3), gives us the desired result.

□
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Lemma 1.8. The following equality holds:∫ 1

0

lnx√
1− x2

ln
(
1 +

√
1− x2

)
dx = 4G − 11π

16
ζ(2) +

3π

8
ln2 2.

Proof. We make the substitution: x = cos v so that dx = − sin v dv

Then,

∫ 1

0

lnx√
1− x2

ln
(
1 +

√
1− x2

)
dx =

∫ π

2

0
ln cos v ln (1 + sin v) dv

In this equation, due to symmetry, recognizing that,

∫ π

2

0
ln cos v ln (1 + sin v) dv =

∫ π

2

0
ln sin v ln (1 + cos v) dv, we conclude:

∫ 1

0

lnx√
1− x2

ln
(
1 +

√
1− x2

)
dx =

∫ π

2

0
ln sin v ln (1 + cos v) dv

Now, in the de�nite integral on the right side, we make the Weierstrass

substitution: tan
v

2
= t, so that

dt

dv
=

1 + t2

2
. It follows that,

∫ π

2

0
ln sin v ln (1 + cos v) dv = 2 ln2 (2)

∫ 1

0

1

1 + t2
dt

+2 ln (2)

∫ 1

0

ln t

1 + t2
dt

−2

∫ 1

0

ln (t) ln
(
1 + t2

)
1 + t2

dt

−4 ln (2)

∫ 1

0

ln
(
1 + t2

)
1 + t2

dt

+2

∫ 1

0

ln2
(
1 + t2

)
1 + t2

dt

=
π

4
ln2 2− 2G ln 2− 7π

8
ζ(2) + 8G

−2

∫ 1

0

ln (t) ln
(
1 + t2

)
1 + t2

dt
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In the recent article [7, p. 69], Sofo had evaluated the following de�nite

integral formula:

∫ 1

0

ln (t) ln
(
1 + t2

)
1 + t2

dt = 2G−G ln 2− 3π

32
ζ(2)− π

16
ln2 2.

giving us that the following equality holds:

∫ 1

0

lnx√
1− x2

ln
(
1 +

√
1− x2

)
dx =

π

4
ln2 2− 2G ln 2− 7π

8
ζ(2) + 8G − 4G

−2

(
−G ln 2− 3π

32
ζ(2)− π

16
ln2 2

)
= 4G − 11π

16
ζ(2) +

3π

8
ln2 2.

□

Lemma 1.9. The following equality holds:∫ 1

0

lnx√
1− x2

dx = −π

2
ln 2.

Proof. We make the substitution: x = sin q so that dx = cos q dq

Then,

∫ 1

0

lnx√
1− x2

dx =

∫ π

2

0
ln (sin q) dq.

In this expression, due to symmetry, we have,

∫ π

2

0
ln (sin q) dq =

∫ π

2

0
ln (cos q) dq.

Using the derivative of the Euler's beta function and the Leibniz formula

for the di�erentiation of products, K.S.Kölbig [6, p. 25], had evaluated the

de�nite integral

∫ π

2

0
ln (cos q) dq = −π

2
ln 2.

giving us that the following equality holds:
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∫ 1

0

lnx√
1− x2

dx = −π

2
ln 2.

□

Lemma 1.10. The following equality holds:∫ 1

0

lnx√
1− x2

ln
(√

1− x2
)
dx =

π

8

(
−ζ(2) + 4 ln2 2

)
.

Proof. We make the substitution: x = sinu′ so that dx = cosu′ du′

Then,

∫ 1

0

lnx√
1− x2

ln
(√

1− x2
)
dx =

∫ π

2

0
ln
(
sinu′

)
ln
(
cosu′

)
du′.

Using the derivative of the Euler's beta function and the Leibniz formula

for the di�erentiation of products, K.S.Kölbig [6, p. 25], had evaluated the

de�nite integral

∫ π

2

0
ln
(
sinu′

)
ln
(
cosu′

)
du′ =

π

8

(
−ζ(2) + 4 ln2 2

)
.

giving us that the following equality holds:∫ 1

0

lnx√
1− x2

ln
(√

1− x2
)
dx =

π

8

(
−ζ(2) + 4 ln2 2

)
.

□

Theorem 1.11. The following identity holds:

∞∑
n=1

Hn

(
2n
n

)
(2n+ 1)2 22n

= −8G − 3π

4
ln2 2 +

9π

8
ζ (2) .

Proof.

∞∑
n=1

Hn

(
2n
n

)
(2n+ 1)2 22n

=

∞∑
n=1

Hn

(
2n
n

)
22n

(
1

(2n+ 1)2

)

=
∞∑
n=1

Hn

(
2n
n

)
22n

(
−
∫ 1

0
x2n ln (x) dx

)

= −
∫ 1

0
ln (x)

( ∞∑
n=1

Hn

(
2n

n

)(
x2

4

)n
)
dx

= −2

∫ 1

0

(
ln (x)√
1− x2

ln

(
1 +

√
1− x2

2
√
1− x2

))
dx
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= −2

∫ 1

0

lnx√
1− x2

ln
(
1 +

√
1− x2

)
dx

+2 ln 2

∫ 1

0

lnx√
1− x2

dx

+2

∫ 1

0

lnx√
1− x2

ln
(√

1− x2
)
dx

= −2

(
4G − 11π

16
ζ(2) +

3π

8
ln2 2 +

π

8
ζ(2)

)
= −8G − 3π

4
ln2 2 +

9π

8
ζ (2) ,

and the theorem is proved.

Here in the proofs of Lemma1.3 and Theorem1.11, Bernstein's theorem

[8, Thm. 9.30, p. 243] justi�es interchanging the order of integration and

summation because of the positivity of the coe�cients.

□

Acknowledgement: I am indebted to the anonymous referee for carefully

reading the manuscript and for a thorough, precise and helpful report which

helped me to correct a mistake in the statement of Lemma1.1.

References

[1] Boyadzhiev, K. N., Series with Central Binomial Coe�cients, Catalan Numbers, and

Harmonic Numbers, J. Integer Seq. 15(1) (2012), Article 12.1.7, 11pp. MR: 2872464.

Zbl: 1291.11046.

[2] Dasireddy, N. S., Solution to a problem involving central binomial coe�cients, In-

tegral Transforms Spec. Funct., to appear (2024). doi: 10.1080/10652469.2024.

2339854.

[3] Dasireddy, N. S., A Solution To An Interesting Sum Involving Classical Harmonic

Number and Central Binomial Coe�cient, Math. Student 93(1-2) (2024), 132-137.

https://indianmathsoc.org/pdf/Mathstudent-V93-part1-2-2024.pdf.

[4] Nimbran, A. S., Sums of series involving central binomial coe�cients and harmonic

numbers, Math. Student 88(1-2) (2019), 125-135. https://indianmathsoc.org/ms/

mathstudent-part-1-2019.pdf. Zbl: 07844181.

[5] Campbell, J. M., Levrie, P., and Nimbran, A. S., A natural companion to Catalan's

constant, J. Class. Anal. 18(2) (2021), 117-135. doi: 10.7153/jca-2021-18-09.

MR: 4364726. Zbl: 1499.33016.

https://cs.uwaterloo.ca/journals/JIS/VOL15/Boyadzhiev/boyadzhiev6.html
http://www.ams.org/mathscinet-getitem?mr=2872464
http://www.zentralblatt-math.org/zmath/en/search/?q=an:an:1291.11046
https://doi.org/10.1080/10652469.2024.2339854
https://doi.org/10.1080/10652469.2024.2339854
https://indianmathsoc.org/pdf/Mathstudent-V93-part1-2-2024.pdf
https://indianmathsoc.org/ms/mathstudent-part-1-2019.pdf
https://indianmathsoc.org/ms/mathstudent-part-1-2019.pdf
http://www.zentralblatt-math.org/zmath/en/search/?q=an:07844181
https://dx.doi.org/10.7153/jca-2021-18-09
http://www.ams.org/mathscinet-getitem?mr=4364726
http://www.zentralblatt-math.org/zmath/en/search/?q=an:an:1499.33016


114 NANDAN SAI DASIREDDY

[6] Kölbig, K. S., On the value of a logarithmic-trigonometric integral, BIT 11 (1971),

21-28. doi: 10.1007/BF01935325. Zbl: 0216.48504.

[7] Sofo, A., A family of de�nite integrals, Sci. Ser. A Math. Sci. (N.S.) 31 (2021), 61-

74. https://scientia.mat.utfsm.cl/archivos/vol31/5.pdf. Zbl: 1497.11209.

[8] Apostol, T. M., Mathematical Analysis, 2nd edn., Addison-Wesley Publishing Co.,

Reading, Mass.-London-Don Mills, Ont., 1974. MR: 0344384. Zbl: 0309.26002.

Nandan Sai Dasireddy

House No. 3-11-363, Pavani Plaza, Flat No:401,

Road No. 2, Shivaganga Colony, Siris Road,

L.B. Nagar, Hyderabad, Telangana, India.

E-mail: dasireddy.1818@gmail.com

https://doi.org/10.1007/BF01935325
http://www.zentralblatt-math.org/zmath/en/search/?q=an:an:0216.48504
https://scientia.mat.utfsm.cl/archivos/vol31/5.pdf
http://www.zentralblatt-math.org/zmath/en/search/?q=an:an:1497.11209
http://www.ams.org/mathscinet-getitem?mr=0344384
http://www.zentralblatt-math.org/zmath/en/search/?q=an:an:0309.26002
mailto:// dasireddy.1818@gmail.com


The Mathematics Student ISSN: 0025-5742

Vol. 93, Nos. 3-4, July-December (2024), 115�133

DYNAMICS OF TWO BY TWO SYMMETRIC

MATRICES OF TRACE ZERO
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Abstract. In this paper, we describe the entire structure of the vector

space Sym0
2 of all symmetric matrices of size 2 having trace zero. This

is motivated by the geometrical interpretation of any arbitrary element

of Sym0
2. We further study the orbits and stable sets of these elements.

As an application of the obtained structure of Sym0
2, we obtain the

symmetric matrices of size 2, trace of whose product with any trace

zero symmetric matrix is zero. Finally some well known trigonometric

formulas are interpreted geometrically incorporating the anatomy of

Sym0
2.

1. Introduction

The study of symmetric matrices and trace zero matrices attracted con-

siderable attention. Many mathematicians have researched on symmetric

matrices to study SNIEP, symmetric non-negative inverse eigenvalue prob-

lem (cf. [2],[5],[6] & [7]). Also people have independently worked on trace

zero matrices and found necessary and su�cient conditions for a matrix to

have zero trace (cf. [1] & [8]). A study of SNIEP for trace zero symmetric

matrices can be found in [9].

This paper is devoted to the study of trace zero symmetric matrices of

size 2 and its applications. But we do it in a di�erent context and therefore

follow a di�erent approach altogether.

We begin by �xing some notations which we are going to use repeatedly.

Let R be the �eld of real numbers. In this paper, by a vector space we

always mean a vector space over R and by a matrix we mean a matrix

with real entries. Let Symn & On be the set of all symmetric matrices and

2010 Mathematics Subject Classi�cation: 15A63, 15B10, 97G60, 97H60
Key words and phrases: Orthogonal matrix, symmetric matrix, trace, inner product,
orbit, trigonometry

© Indian Mathematical Society, 2024 .
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orthogonal matrices of size n respectively and Sym0
n be the subset of Symn

consisting of all matrices having trace zero. By PSym0
n we denote the set of

all n × n symmetric matrices, trace of whose product with any element of

Sym0
n is zero. We reserve the notations In and On for identity matrix and

zero matrix of size n respectively. We denote the trace of a given matrix

A by Tr(A) and determinant of A by det(A). Given any two matrices A

and B of size n, we denote the matrix multiplication A ·B simply by their

juxtaposition AB.

In this paper, our main aim is to describe the precise structure of Sym0
2.

In Theorem 2.4, we show that the elements of Sym0
2 are precisely of the

form
( λ cos(θ) λ sin(θ)
λ sin(θ) −λ cos(θ)

)
for some λ ∈ R, θ ∈ [0, 2π). Using the structure of

Sym0
2, we further show that the set of all trace zero symmetric matrices of

size 2 having eigenvalues 1 and −1 is same as the set of all size 2 orthogonal

matrices having determinant −1, (cf. Corollary 2.5).

We come up with the geometrical interpretation of the elements of Sym0
2

as well. In fact, this is the motivation behind �nding the anatomy of Sym0
2.

Moreover, we extensively discuss about the orbits, raise the questions about

the �niteness of those orbits and answer those using the obtained structure

of Sym0
2. We obtain a necessary and su�cient condition for �niteness of

the orbit Or(a,b)(T
λ
θ ) of an arbitrary element T λ

θ of Sym0
2 starting at a point

(a, b) (cf. Theorem 2.7).

We further study the dynamics of T λ
θ and show how the stable set

StabTλ
θ
((a, b)) of any point (a, b) with respect to T λ

θ varies as λ varies. In

the process, we obtain that the stable set StabTλ
θ
((a, b)) either contains only

(a, b) or is the whole of R2 depending on whether λ lies in the open interval

(1, 1) or not, (cf. Theorem 2.10).

In section 3, we look upon a couple of applications of the structure of

Sym0
2. Firstly, we derive the structure of PSym0

2 in subsection 3.1. To be

precise, we show that PSym0
2 consists of scalar matrices and scalar matrices

only, (cf. Theorem 3.1). We then prove that the obtained anatomy of

PSym0
2 can be generalised for any n ≥ 2 using Frobenius inner product on

Symn (cf. Theorem 3.2).

As another application, we talk about two rigid motions, namely ro-

tation and re�ection, of any point of the Euclidean plane and show that

rotating the point of re�ection of a given point with respect to a line is

same as re�ecting it with respect to some other line, (cf. Theorem 3.3).
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Though this can be proved using simple techniques of Euclidean geometry,

but we do it incorporating the structure of Sym0
2 and as a result the eluci-

dation seems to be an elegant one. The given proof can also be thought of

as a geometric interpretation of couple of well known and frequently used

trigonometric formulas (cf. Remark 3.4).

In Section 4, we conclude by indicating that the structure of some sub-

sets of Sym0
n can be obtained for n > 2 as well by adapting the method

used in Theorem 2.4, provided some conditions being suitably put on the

set of eigenvalues of its elements.

2. On the structure of Sym0
2 and orbits of its elements

In this section, we provide the structure of Sym0
2, analyse its elements

from a geometric viewpoint and then discuss upon the orbits and the stable

sets of those elements.

For any given real number θ, denote the line in R2 passing through

origin and making an angle θ with the positive direction of x-axis in the

anticlockwise direction by Lθ. Given any λ ∈ R, de�ne a map (geometri-

cally), denoted by T λ
θ , as follows : Given any point (x1, x2), the map T λ

θ

�rst re�ects the point (x1, x2) with respect to the line Lθ and scales that by

λ followed by that. Denoting the re�ection of (x1, x2) with respect to the

line Lθ by Rθ((x1, x2)), the map T λ
θ can be given as follows:

T λ
θ : R2 → R2

(x1, x2) 7→ λRθ((x1, x2)).
(2.1)

De�ne the orbit Or(a,b)(T
λ
θ ) of the map T λ

θ starting at a point (a, b) as

follows:

Or(a,b)(T
λ
θ ) := {(T λ

θ )
n((a, b)) | n ∈ N}.

We now ask the following questions:

Question 2.1. (1) Given any (a, b) ∈ R2, for what values of θ and λ,

the orbit Or(a,b)(T
λ
θ ) is �nite?

(2) For what values of θ and λ, the orbit Or(a,b)(T
λ
θ ) is a singleton set,

where (a, b) ∈ R2?

(3) Given any (a, b) ∈ R2, for what values of θ and λ, the orbitOr(a,b)(T
λ
θ )

is a set having two points?

(4) For what values of θ and λ, (T λ
θ )

n = I2 for some positive integer n?
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Figure 1. Image of a point P0 under the map λRθ for some
values of λ

(5) Given any (a, b) ∈ R2, the sequence {(T λ
θ )

n((a, b))}n≥0 is convergent

in usual topology and in discrete topology for what values of θ and

λ?

To answer these questions, we �rst calculate T λ
θ (P0) for any given point

P0 ∈ R2. We do the calculation assuming that both the coordinates of the

point P0 = (x0, y0) are positive and the line joining P0 and origin makes an

angle α with the positive direction of x-axis. That is to say, P0 lies in the

line Lα. Moreover, we assume that 0 < α ≤ θ ≤ 2θ − α < π
2 , that is to

say the lines Lα, Lθ and L2θ−α are having slopes in non-decreasing order,

lies in �rst and third quadrant and none of those are x-axis or y-axis. The

calculations are very much similar in the remaining cases as well.

As we mentioned, we start with a point P0 = (x0, y0) lying in the line

Lα. We �rst want to determine the re�ection of P0 with respect to the line

Lθ. For that we draw a perpendicular from the point P0 to the line Lθ and

denote the point of intersection of this with Lθ by A. Then we extend the

line segment P0A and suppose that intersects the line L2θ−α at the point

P1 = (x1, y1). Then clearly the point P1 is the re�ection of P0. Now we

determine x1 and y1 in terms of the known quantities x0, y0, θ and α using

the properties of re�ection.
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The equations of the line Lθ, Lα and L2θ−α are given as follows:

Lθ : y = tan(θ) x, Lα : y = tan(α) x, L2θ−α : y = tan(2θ − α) x.

By properties of re�ection, we get that the triangle AP0O and AP1O are

congruent to each other. That is to say, △AP0O ∼= △AP1O. Therefore, the

length L(OP0) of the line segment OP0 is equal to that of OP1, that is to

say, L(OP0) = L(OP1). We then have the following implications.

L(OP0) = L(OP1) ⇒
√

x20 + y20 =
√

x21 + y21

⇒
√
x20 + x20 tan

2(α) =
√
x21 + x21 tan

2(2θ − α)

⇒ x0 sec(α) = x1 sec(2θ − α) ⇒ x1 = x0 sec(α)cos(2θ − α).

So the abscissa x1 of the point of re�ection P1 of P0 is given as follows:

x1 = x0 sec(α)cos(2θ − α). (2.2)

As (x1, y1) lies in the line L2θ−α, we have y1 = tan(2θ − α) x1. We now

have the following implications:

y1 = tan(2θ − α) x1 ⇒ y1 = x0 sec(α)cos(2θ − α)tan(2θ − α) (by (2.2))

⇒ y1 = x0 sec(α)sin(2θ − α)

⇒ y1 = y0 cosec(α)sin(2θ − α) (as (x0, y0) lies in Lα).

So the ordinate y1 of the point of re�ection P1 of P0 is given as follows:

y1 = y0 cosec(α)sin(2θ − α). (2.3)

Remark 2.2. Taking θ = α in equations (2.2) and (2.3), we have P0 =

(x0, y0) = (x1, y1) = P1. On the other hand, if θ ̸= α and P0 ̸= (0, 0), then

P0 ̸= P1 as P0 ∈ Lα and P1 ∈ L2θ−α. This can be justi�ed also using (2.2)

and (2.3). This depicts the fact that re�ection of any point located on the

axis of the re�ection is the point itself. Moreover, this is true exclusively

for points located on the line of re�ection.

So we have obtained the coordinates of the point of re�ection of (x0, y0)

about the line Lθ. For the moment, we take a break from the discussion

about the map T λ
θ . We continue with the same after a while and answer

the questions raised.

We now provide the description of Sym0
2. Towards that, we have the

following proposition which says about the structure of the set O2 of or-

thogonal matrices of size 2. Though this is a standard result (for example,
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see [3, p. 348] for determinant 1 orthogonal matrices), we include this over

here for the sake of continuity.

Proposition 2.3. The collection O2 of all orthogonal matrices of size 2 is

given as follows:

O2 = {
( cos(α) sin(α)
−sin(α) cos(α)

)
| α ∈ [0, 2π)} ∪ {

( cos(β) sin(β)
sin(β) −cos(β)

)
| β ∈ [0, 2π)}.

Proof. Given x = (x1, x2) and y = (y1, y2), by ⟨x, y⟩ we denote the standard
inner product of x and y in R2. That is to say, ⟨x, y⟩ = x1y1 + x2y2. Let

M =
(
p q
r s

)
be a given orthogonal matrix. As the columns of M are of unit

norm with respect to the standard inner product of R2, we have

p2 + r2 = 1, q2 + s2 = 1. (2.4)

Then (2.4) in turn imply that

| p |≤ 1, | r |≤ 1, | q |≤ 1, | s |≤ 1. (2.5)

As the columns of M are orthogonal with respect to the standard inner

product of R2, we have

pq + rs = 0. (2.6)

Case - 1 :

If det(A) = 1, then we moreover have

ps− rq = 1. (2.7)

So, conditions (2.5), (2.6) and (2.7) imply that, there exists α ∈ [0, 2π) such

that

M =

(
p q

r s

)
=

(
cos(α) sin(α)

−sin(α) cos(α)

)
. (2.8)

Case - 2 :

If det(A) = −1, then we moreover have

ps− rq = −1. (2.9)

So, conditions (2.5), (2.6) and (2.9) imply that, there exists β ∈ [0, 2π) such

that

M =

(
p q

r s

)
=

(
cos(β) sin(β)

sin(β) −cos(β)

)
. (2.10)

Therefore, we have the result from (2.8) and (2.10). □

Following theorem describes the entire structure of Sym0
2.



DYNAMICS OF TWO BY TWO SYMMETRIC MATRICES OF TRACE ZERO 121

Theorem 2.4. The collection Sym0
2 of all trace zero symmetric matrices of

size 2 is given as follows:

Sym0
2 = {

( λ cos(θ) λ sin(θ)
λ sin(θ) −λ cos(θ)

)
| λ ∈ R, θ ∈ [0, 2π)}.

Proof. By spectral theorem, we have that any real symmetric matrix is

orthogonally diagonalisable and vice versa (cf. [3, p.347]). That is, for

n = 2, given any symmetric matrix A =
(
a b
b c

)
, there exists an orthogonal

matrix AO such that

AO

(
a b
b c

)
AO

−1 =
(
γ 0
0 δ

)
. (2.11)

Moreover, ifA ∈ Sym0
2 then sum of eigenvalues ofA is zero, that is, γ+δ = 0.

Case - 1 :

If det(AO) = 1, then by Proposition 2.3 there exists α ∈ [0, 2π) such that

AO =
( cos(α) sin(α)
−sin(α) cos(α)

)
. So, we also have AO

−1 =
( cos(α) −sin(α)
sin(α) cos(α)

)
. Therefore,

from (2.11) we have the following:

A =

(
a b

b c

)
=

(
cos(α) −sin(α)

sin(α) cos(α)

)(
γ 0

0 −γ

)(
cos(α) sin(α)

−sin(α) cos(α)

)

=

(
γ cos2(α)− γ sin2(α) 2γ cos(α)sin(α)

2γ cos(α)sin(α) γ sin2(α)− γ cos2(α)

)

=

(
γ cos(2α) γ sin(2α)

γ sin(2α) −γ cos(2α)

)
.

Case - 2 :

If det(AO) = −1, then by Proposition 2.3 there exists β ∈ [0, 2π) such that

AO =
( cos(β) sin(β)
sin(β) −cos(β)

)
. So, we also have AO

−1 = AO =
( cos(β) sin(β)
sin(β) −cos(β)

)
.

Therefore, from (2.11) we have the following:

A =

(
a b

b c

)
=

(
cos(β) sin(β)

sin(β) −cos(β)

)(
γ 0

0 −γ

)(
cos(β) sin(β)

sin(β) −cos(β)

)

=

(
γ cos2(β)− γ sin2(β) 2γ cos(β)sin(β)

2γ cos(β)sin(β) γ sin2(β)− γ cos2(β)

)

=

(
γ cos(2β) γ sin(2β)

γ sin(2β) −γ cos(2β)

)
.

By taking θ = 2α if α < π & θ = 2(α− π) if α ≥ π in Case - 1 and θ = 2β

if β < π & θ = 2(β − π) if β ≥ π in Case - 2, we have the theorem. □
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We get the following obvious conclusion relating orthogonal matrices of

size 2 having determinant −1 and a subset of Sym0
2.

Corollary 2.5. Any 2 × 2 orthogonal matrix A of determinant −1 is a

symmetric matrix of trace zero. Moreover, given any 2×2 symmetric matrix

A of trace zero, there exists a 2× 2 orthogonal matrix B of determinant −1

and a scalar λ such that A = λB. Furthermore, the set of all trace zero

symmetric matrices of size 2 having eigenvalues 1 and −1 is same as the

set of all size 2 orthogonal matrices having determinant −1.

Proof. Follows directly from Proposition 2.3 and Theorem 2.4. □

We now resume the discussion about the map T λ
θ . We did some cal-

culations and obtained the coordinates of the point of a given point with

respect to the line Lθ. Look at the same calculations from a di�erent point

of view. Consider the matrix Rθ =
( cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)
. Then(

cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)

)(
x0

y0

)
=

(
x0 cos(2θ) + y0 sin(2θ)

x0 sin(2θ)− y0 cos(2θ)

)
. (2.12)

Now,

x0 cos(2θ) + y0 sin(2θ)

= x0 cos(2θ) + x0 tan(α)sin(2θ)(as (x0, y0) lies on Lα)

= x0 sec(α)(cos(α)cos(2θ) + sin(α)sin(2θ))

= x0 sec(α)cos(2θ − α) = x1 (by (2.2)).

(2.13)

Similarly, we have

x0 sin(2θ)− y0 cos(2θ)

= y0 cot(α)sin(2θ)− y0 cos(2θ)(as (x0, y0) lies on Lα)

= yo cosec(α)(cos(α)sin(2θ)− cos(2θ)sin(α))

= yo cosec(α)sin(2θ − α) = y1 (by (2.3)).

(2.14)

Therefore by (2.12), (2.13) and (2.14), we have

Rθ

(
x0

y0

)
=

(
cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)

)(
x0

y0

)
=

(
x1

y1

)
. (2.15)
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Recall the de�nition of the map T λ
θ as de�ned in (2.1). Now treating points

of R2 as column vectors, from (2.15) we can conclude that

T 1
θ = Rθ = Rθ.

Moreover,

T λ
θ = λRθ = λRθ. (2.16)

Thus, (2.16) provides the geometry of the elements of Sym2
0. Also from now

on we simply use the notation R to mean both Rθ and Rθ if there is there

is no confusion regarding the line of re�ection Lθ. So, λR and T λ
θ denote

the same map and we use them interchangeably.

We now answer the questions we posed related to the map T λ
θ . Towards

that, we have the following proposition.

Proposition 2.6. Let n be any positive integer. Then (λR)n = I2 if and

only if n is even and λ = 1 or −1.

Proof. It is easy to observe that R2 = I2. Therefore, if n is even and λ = 1

or −1, then (λR)n = λnRn = λnI2 = I2.
Conversely, let (λR)n = I2. Therefore,

Rn = 1
λn I2. (2.17)

Recall that R =
( cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)
. Now if n is odd, then (2.17) implies that

cos(2θ) = −cos(2θ), which in turn says that cos(2θ) = 0. This contradicts

(2.17). Therefore if (λR)n = I2 then n can't be odd. Hence n is even and

moreover by (2.17) λ = 1 or −1. □

Now we are in a position to �nd some exclusive conditions which will

force the orbit Or(a,b)(T
λ
θ ) to be �nite. Precisely, we obtain the following.

Theorem 2.7. Let λ be any non-zero real number and let (a, b) be any point

of R2 other than origin. Then Or(a,b)(T
λ
θ ) is �nite if and only if λ = 1 or

−1.
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Proof. We �rst show that to get the �niteness of the orbit Or(a,b)(T
λ
θ ) it is

su�cient to have λ = 1 or −1. For that, we proceed contra positively.

Or(a,b)(T
λ
θ ) is not �nite

⇒ (λR)n((a, b)) ̸= (λR)m((a, b)) for all non-negative m & n

⇒ (λR)n−m((a, b)) ̸= (a, b) (assuming n > m w.l.o.g)

⇒ (λR)p ̸= I2 for all even p

⇒ λ ̸= 1,−1 (by Proposition 2.6).

We now prove the converse part. Let Or(a,b)(T
λ
θ ) is �nite. Then

Or(a,b)(T
λ
θ ) is �nite ⇒ (λR)n((a, b)) = (λR)m((a, b))

for some non-negative m & n

⇒ (λR)n−m((a, b)) = (a, b) (assuming n > m w.l.o.g)

⇒ (λR)p((a, b)) = (a, b), where n−m = p (say).

(2.18)

Now if p is even, then by (2.18) we further have the following implications.

λpR((a, b)) = (a, b) ⇒ λpI2((a, b)) = (a, b)

⇒ λp = 1 ⇒ λ = 1,−1.

For p odd, we further consider two mutually exclusive and exhaustive cases.

First Case - (a, b) ∈ Lθ :

By (2.18) we have the following implications.

λpR((a, b)) = (a, b) ⇒ λp(a, b) = (a, b)

⇒ λp = 1 ⇒ λ = 1.

Second Case - (a, b) /∈ Lθ :

Let (a, b) ∈ Lα for some real number α. As p is odd, by (2.18), we have

that (λR)n((a, b)) = (λR)m((a, b)), where one of n and m is odd and other

is even. Without loss of generality, take n to be odd and m to be even.

Then we have λnR((a, b)) = λm(a, b). Therefore, R((a, b)) and (a, b) are

collinear, which is a contradiction to the assumption that (a, b) /∈ Lθ by

Remark 2.2. So, this case is not at all feasible. □

Remark 2.8. (1) Theorem 2.7 talks about a necessary and su�cient

condition for �niteness of the orbit Or(a,b)(T
λ
θ ) for non-zero values
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of λ and for points (a, b) ̸= (0, 0). Also, Or(a,b)(T
λ
θ ) is �nite if either

(a, b) = (0, 0) or λ = 0.

(2) We now check when Or(a,b)(T
λ
θ ) is either singleton or consists of two

elements.

(a) If (a, b) = (0, 0), then Or(0,0)(T
λ
θ ) = {(0, 0)} for all θ and λ.

(b) If (a, b) ̸= (0, 0), then we have the following:

(i) If (a, b) ∈ Lθ, then Or(a,b)(T
1
θ ) = {(a, b)}.

(ii) If (a, b) /∈ Lθ, then Or(a,b)(T
1
θ ) = {(a, b), T 1

θ (a, b)} and

Or(a,b)(T
0
θ ) = {(a, b), (0, 0)}.

(iii) Or(a,b)(T
−1
θ ) = {(a, b), T−1

θ (a, b)}.
So, we discussed a few cases where the orbitOr(a,b)(T

λ
θ ) is either

singleton or consists of two elements only. It can be easily

checked that these are all possible such orbits.

We now look at the sequence {(T λ
θ )

n((a, b))}n≥0. We want to �nd some

suitable (a, b) ∈ R2, θ and λ such that the sequence {(T λ
θ )

n((a, b))}n≥0 is

eventually constant. At this point, we note that whenever the sequence

{(T λ
θ )

n((a, b))}n≥0 is eventually constant, the orbit Or(a,b)(T
λ
θ ) must be

�nite. Therefore, λ can have only three values, namely 1, −1 and 0 un-

less we take (a, b) = (0, 0) (cf. Theorem 2.7 and Remark 2.8). If we

take (a, b) = (0, 0), then for any λ and θ, {(T λ
θ )

n((0, 0))}n≥0 is a con-

stant sequence having all the terms equal to (0, 0). So look at points other

than origin. Let (a, b)(̸= (0, 0)) lies in the line Lα for some α ∈ R. Then

clearly the sequence {(T 0
θ )

n((a, b))}n≥0 is eventually constant. For λ = 1,

{(T 1
θ )

n((a, b))}n≥0 is eventually constant only when θ = α. Finally λ = −1

provides us eventually constant sequences only in the most simplest case,

that is, when (a, b) = (0, 0). As in the discrete topology on R2, only con-

vergent sequences are the eventually constant ones, therefore the sequence

{(T λ
θ )

n((a, b))}n≥0 is convergent in discrete topology in the following cases.

The point of convergence is also given accordingly.

(1) When (a, b) = (0, 0), the sequence {(T λ
θ )

n((0, 0))}n≥0 converges to

(0, 0) in discrete topology, for any λ and θ.

(2) When λ = 0, the sequence {(T 0
θ )

n((a, b))}n≥0 converges to (0, 0) in

discrete topology, for any (a, b) and θ.

(3) When λ = 1, the sequence {(T 1
θ )

n((a, b))}n≥0 converges to (a, b) in

discrete topology for any θ if (a, b) ∈ Lθ.
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As discrete topology is �ner than usual topology on R2, the mentioned

sequences are convergent in usual topology as well. We now �nd out whether

there are some more sequences {(T λ
θ )

n((a, b))}n≥0 that are convergent in

usual topology. As the metric induced by the usual topology on R2 is a

complete metric, to �nd out the convergent sequences it is enough to �nd

the Cauchy sequences over there.

We observe that for any (x0, y0) ∈ R2, if for some n, (T λ
θ )

n((x0, y0)) ∈
Lα, then (T λ

θ )
n+1((x0, y0)) ∈ L2θ−α. As the lines Lα and L2θ−α inter-

sect only at origin, the distance between any two consecutive terms of the

sequence {(T λ
θ )

n((x0, y0))}n≥0 can be made arbitrarily small, that is, the

sequence {(T λ
θ )

n((x0, y0))}n≥0 can be made to be a Cauchy sequence, only

when the terms of the sequence approach origin. So we conclude that the

only possible point of convergence of the sequence {(T λ
θ )

n((x0, y0))}n≥0,

with in�nitely many distinct terms, is (0, 0). We claim that this only possi-

bility can be attained by the sequence {(T λ
θ )

n((x0, y0))}n≥0 for all non-zero

λ with |λ| < 1.

Recall that (λR)n = λnI2 when n is even and (λR)n = λnR when n is

odd. Using this we calculate some upper bounds of the distances between

terms of the sequence {(T λ
θ )

n((x0, y0))}n≥0. Here by distance between any

two points x and y of R2, we mean the Euclidean distance between them

and denote that by d(x, y).

Case 1 : When both n and m are even

d((T λ
θ )

n((x0, y0)),(T
λ
θ )

m((x0, y0))) = d((λR)n, (λR)m)

= d((λnx0, λ
ny0), (λ

mx0, λ
my0))

≤ d((λnx0, λ
ny0), (0, 0)) + d((0, 0), (λmx0, λ

my0))

= (|λ|n + |λ|m)
√

x20 + y20.

(2.19)
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Case 2 : When both n and m are odd

d((Tθ
λ)n((x0, y0)), (T

λ
θ )

m((x0, y0))) = d((λR)n, (λR)m)

= d((λn(x0cos(2θ) + y0sin(2θ)), λ
n(x0sin(2θ)− y0cos(2θ))),

(λm(x0cos(2θ) + y0sin(2θ)), λ
m(x0sin(2θ)− y0cos(2θ))))

≤ d((λn(x0cos(2θ) + y0sin(2θ)), λ
n(x0sin(2θ)− y0cos(2θ))), (0, 0))

+ d((0, 0), (λm(x0cos(2θ) + y0sin(2θ)), λ
m(x0sin(2θ)− y0cos(2θ))))

= (|λ|n + |λ|m)
√

x20 + y20.

(2.20)

Case 3 : When n is even and m is odd

d((T λ
θ )

n((x0, y0)), (T
λ
θ )

m((x0, y0))) = d((λR)n, (λR)m)

= d((λnx0, λ
ny0), (λ

m(x0cos(2θ) + y0sin(2θ)), λ
m(x0sin(2θ)− y0cos(2θ))))

≤ d((λnx0, λ
ny0), (0, 0))

+ d((0, 0), (λm(x0cos(2θ) + y0sin(2θ)), λ
m(x0sin(2θ)− y0cos(2θ))))

= (|λ|n + |λ|m)
√
x20 + y20.

(2.21)

So given any ϵ > 0, by (2.19), (2.20) and (2.21), we can choose n0 ∈ N
such that for all m,n ≥ n0, d((T

λ
θ )

n((x0, y0)), (T
λ
θ )

m((x0, y0))) ≤ (|λ|n +

|λ|m)
√

x20 + y20 < ϵ whenever |λ| < 1. Therefore, {(T λ
θ )

n((x0, y0))}n≥0 is a

Cauchy sequence for all λ with |λ| < 1 and hence convergent to (0, 0) in

usual topology as we justi�ed earlier that (0, 0) is the only possible point of

convergence.

Also, it can be directly checked that the sequence {(T λ
θ )

n((x0, y0))}n≥0

converges to (0, 0) for all λ with |λ| < 1.

Case 1 : When n is even

d((T λ
θ )

n((x0, y0)), (0, 0)) = d((λR)n, (0, 0))

= d((λnx0, λ
ny0), (0, 0))

= |λ|n
√

x20 + y20.

(2.22)
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Figure 2. Convergence of the sequence {(λR)n(P0)}n≥0 for
0 <| λ |< 1

Case 2 : When n is odd

d((T λ
θ )

n((x0, y0)), (0, 0)) = d((λR)n, (0, 0))

= d((λn(x0cos(2θ) + y0sin(2θ)), λ
n(x0sin(2θ)− y0cos(2θ))), (0, 0))

= |λ|n
√
x20 + y20.

(2.23)

So given any ϵ > 0, by (2.22) and (2.23), we can choose n0 ∈ N such

that for all n ≥ n0, d((T
λ
θ )

n((x0, y0)), (0, 0)) = |λ|n
√

x20 + y20 < ϵ
2 whenever

|λ| < 1. Therefore, for all λ with |λ| < 1, the terms of the sequence

{(T λ
θ )

n((x0, y0))}n≥0 eventually lie in the open ball B ϵ
2
(0, 0) of radius ϵ

2

and having centre at (0, 0) and hence convergent to (0, 0) in usual topology.

We want to summarize what we have discussed so far regarding the con-

vergence of the sequence {(T λ
θ )

n((x0, y0))}n≥0 from a di�erent perspective.

For that we lend some terminologies from dynamical systems and de�ne

those solely in our context.

De�nition 2.9. Let X be a �nite dimensional vector space over R and d be

a metric on X. Also let L : X → X be a linear map. Then any two points

x1, x2 of X are said to be forward asymptomatic with respect to the map

L if d(Ln(x1), L
n(x2)) −→ 0 as n −→ ∞. For any x ∈ X, the stable set of
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x with respect to L, denoted by StabL(x), is the set of all points forward

asymptomatic to x with respect to L.

We now have the following theorem regarding how the stable set of any

point of R2 with respect to any arbitrary element λR of Sym0
2 changes all

of a sudden as λ varies from |λ| < 1 to |λ| ≥ 1.

Theorem 2.10. Consider the metric space (R2, d) where d denotes the

usual metric. Then the following hold for any point (a, b) ∈ R2:

(1) For any λ with |λ| < 1,

StabTλ
θ
((a, b)) = R2.

(2) For any λ with |λ| ≥ 1,

StabTλ
θ
((a, b)) = {(a, b)}.

Proof. For any (c, d) ∈ R2 and for any odd n,

d((T λ
θ )

n((a, b)), (T λ
θ )

n((c, d)))

= d((λn(a cos(2θ) + b sin(2θ)), λn(a sin(2θ)− b cos(2θ))),

(λn(c cos(2θ) + d sin(2θ)), λn(c sin(2θ)− d cos(2θ))))

= |λ|n
√

((a− c)cos(2θ) + (b− d)sin(2θ))2 + ((a− c)sin(2θ)− (b− d)cos(2θ))2

= |λ|n
√

(a− c)2 + (b− d)2

= |λ|nd((a, b), (c, d)).
(2.24)

Also for any (c, d) ∈ R2 and even n,

d((T λ
θ )

n((a, b)), (T λ
θ )

n((c, d))) = d((λna, λnb), (λnc, λnd))

= |λ|n
√
(a− c)2 + (b− d)2 = |λ|nd((a, b), (c, d)).

(2.25)

Therefore we have the following as λ varies.

(1) For all (c, d) ∈ R2, d((T λ
θ )

n((a, b)), (T λ
θ )

n((c, d))) −→ 0 as n −→ ∞
by (2.24) and (2.25), whenever |λ| < 1. So any point of R2 is forward

asymptomatic to (a, b) and hence StabTλ
θ
((a, b)) = R2.

(2) By (2.24) and (2.25), for |λ| ≥ 1, d((T λ
θ )

n((a, b)), (T λ
θ )

n((c, d))) −→
0 as n −→ ∞ if and only if d((a, b), (c, d)) = 0 if and only if (a, b) =

(c, d). So the only point forward asymptomatic to (a, b) is (a, b)

itself, that is to say StabTλ
θ
((a, b)) = {(a, b)}.
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□

Remark 2.11. First part of Theorem 2.10 can be proved alternatively as

follows. We �rst claim that StabTλ
θ
((0, 0)) = R2 for any λ with |λ| < 1.

When λ = 0, it is easy to see that any point of R2 is forward asymptomatic

to (0, 0) with respect to T λ
θ . Also, the same is true for any λ with 0 <

|λ| < 1 by (2.22) and (2.23). Hence we have the claim. Now for any point

(a, b) ̸= (0, 0),

d((T λ
θ )

n((a, b)), (T λ
θ )

n((c, d)))

≤ d((T λ
θ )

n((a, b)), (T λ
θ )

n((0, 0))) + d((T λ
θ )

n((0, 0)), (T λ
θ )

n((c, d)))

= d((T λ
θ )

n((a, b)), (0, 0)) + d((0, 0), (T λ
θ )

n((c, d)))

Therefore for all (c, d) ∈ R2, d((T λ
θ )

n((a, b)), (T λ
θ )

n((c, d))) −→ 0 as n −→
∞ by (2.22) and (2.23). So any point of R2 is forward asymptomatic to

(a, b) and hence StabTλ
θ
((a, b)) = R2.

3. Applications of the structure of Sym0
2

In this section we talk about a couple of applications of the obtained

structure of Sym0
2. In the �rst subsection we obtain the structure of the set

PSym0
2. In the next subsection we reinterpret some trigonometric formulas

and show how those can be used to solve purely geometric questions.

3.1. The structure of PSym0
2. Recall that PSym

0
n is the set of all n× n

symmetric matrices, trace of whose product with any element of Sym0
n is

zero. In this subsection we obtain the structure of PSym0
2 in the form of

following theorem.

Theorem 3.1. The set PSym0
2 is the set of all scalar matrices of size 2.

Proof. Let A =
(
a b
b c

)
∈ PSym0

2 be arbitrarily chosen. Then Tr(BA) = 0

for all B ∈ Sym0
2. Therefore by Theorem 2.4, we have:

Tr(
( γ cos(θ) γ sin(θ)
γ sin(θ) −γ cos(θ)

)(
a b
b c

)
) = 0,

for all γ ∈ R and θ ∈ [0, 2π). That is, for all γ ∈ R and θ ∈ [0, 2π),

γ(a cos(θ) + 2b sin(θ)− c cos(θ)) = 0. (3.1)

Plugging γ = 1 and θ = 0 in (3.1), we get a = c. Similarly, plugging γ = 1

and θ = π
2 in (3.1), we get b = 0. Hence, the assertion follows. □
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In fact, we have the following more general result. This is motivated by

[4, Problem 9, Exercises VI, S2, p.190].

Theorem 3.2. For any positive integer n ≥ 2, PSym0
n is the set of all

scalar matrices of size n.

Proof. Consider the Frobenius inner product ⟨, ⟩ on Symn given by ⟨A,B⟩ =
Tr(AB), for any A,B ∈ Symn. Then PSym0

n is nothing but the orthogonal

complement (Sym0
n)

⊥ of Sym0
n with respect to the Frobenius inner product.

Now as Sym0
n is a subspace of Symn of co-dimension 1 and as In ∈ PSym0

n,

we have the theorem. □

So, the proof of Theorem 3.1 incorporates the obtained structure of

Sym0
2 and provides an alternative way of proving Theorem 3.2 for n = 2.

3.2. Interpreting some trigonometric formulas. In this subsection, we

prove an interesting geometric property of R2 using the geometric interpre-

tation of the elements of Sym0
2 (cf. (2.16)). Precisely, we prove the following

:

Theorem 3.3. Given any real number β ∈ [0, π), let Lβ denotes the line

passing through origin and making an angle β (in the anticlockwise direc-

tion) with positive direction of x axis. Then, given any point (x0, y0) of

R2, rotating the point of re�ection of (x0, y0) clockwise (respectively anti-

clockwise) with respect to the line Lθ/2 by an angle α is same as re�ecting

(x0, y0) with respect to the line L(θ−α)/2 (respectively L(θ+α)/2).

Proof. We interpret a point (x0, y0) of R2 as the 2× 1 column vector
( x0
y0

)
.

From (2.1), (2.16) and Theorem 2.4, we have that an element
( cos(θ) sin(θ)
sin(θ) −cos(θ)

)
of Sym0

2, denoted by Rθ/2, re�ects a point (x0, y0) with respect to the line

Lθ/2. An orthogonal matrix
( cos(α) sin(α)
−sin(α) cos(α)

)
of determinant 1, denoted by

O1
α, represents clockwise rotation of the plane R2. Similarly, the matrix O1

−α

represents anticlockwise rotation of the plane R2 (cf. [3, p.348]). Hence,

to prove the theorem, we need to show that O1
α · Rθ

( x0
y0

)
= Rθ−α

( x0
y0

)
for
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clockwise case and O1
−α ·Rθ

( x0
y0

)
= Rθ+α

( x0
y0

)
for anticlockwise case. Now,

O1
α ·Rθ =

(
cos(α) sin(α)

−sin(α) cos(α)

)(
cos(θ) sin(θ)

sin(θ) −cos(θ)

)

=

(
cos(α)cos(θ) + sin(α)sin(θ) cos(α)sin(θ)− sin(α)cos(θ)

cos(α)sin(θ)− sin(α)cos(θ) −cos(α)cos(θ)− sin(α)sin(θ)

)

=

(
cos(θ − α) sin(θ − α)

sin(θ − α) −cos(θ − α)

)
= Rθ−α.

(3.2)

Similarly we have :

O1
−α ·Rθ = Rθ+α. (3.3)

The theorem now follows from (3.2) and (3.3) for clockwise and anticlock-

wise scenario respectively. □

Remark 3.4. Theorem 3.3 talks about a geometric property of the plane

R2 in both clockwise and anticlockwise context. Let's denote that property

by P ⟳ for clockwise case and by P ⟲ for anticlockwise case. Now consider

the following standard trigonometric equalities :

cos(θ + α) = cos(α)cos(θ)− sin(α)sin(θ),

sin(θ + α) = cos(α)sin(θ) + sin(α)cos(θ).
(3.4)

cos(θ − α) = cos(α)cos(θ) + sin(α)sin(θ),

sin(θ − α) = cos(α)sin(θ)− sin(α)cos(θ).
(3.5)

So, Theorem 3.3 says that P ⟳ can be thought of as a geometric inter-

pretation of the equalities in (3.5) (cf. (3.2)). Similarly, deciphering (3.4)

geometrically, we obtain P ⟲ (cf. (3.3)).

4. Conclusion

It is worth mentioning that the structure of some subsets of Sym0
n can

be obtained for n > 2 as well by adapting the method used in Theorem

2.4, provided some conditions being suitably put on the set of eigenvalues

(other than they add upto zero) of all its elements.
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PROPERTY (Bgw1) AND WEYL TYPE THEOREMS

NEERU KASHYAP (SHARMA)

Abstract. This paper discusses property (Bgw1), which is an exten-

sion of the property (Bgw) de�ned and studied in [19]. We investigate

the property (Bgw1) in connection with Weyl type theorems and estab-

lish necessary and su�cient conditions for which the property (Bgw1)

holds for a bounded linear operator de�ned on a Banach space. We

study the property (Bgw1) for operators satisfying the single-valued

extension property (SVEP). Certain conditions are explored on Hilbert

space operators T and S so that T ⊕S obeys the property (Bgw1). We

also discuss the preservation of the property (Bgw) under perturbations

by �nite rank and nilpotent operators.

1. Introduction and Preliminaries

Let B(X) denote the Banach algebra of all bounded linear operators

on an in�nite-dimensional complex Banach space X. For an operator T ∈
B(X), let T ∗, N(T ), R(T ), σ(T ) and σa(T ) denote respectively adjoint, null

space, range space, spectrum and approximate spectrum of T . Let α(T ) and

β(T ) be the nullity and de�ciency of T de�ned by α(T ) = dimN(T ) and

β(T ) = codimR(T ). If the range R(T ) of T is closed and α(T ) <∞ (resp.

β(T ) < ∞), then T is said to be an upper (resp., a lower) semi-Fredholm

operator. Let USF (X) denote the class of all upper semi-Fredholm opera-

tors. An operator T ∈ B(X) is said to be semi-Fredholm if T is either an

upper or a lower semi-Fredholm and the index of T is de�ned by ind(T ) =

α(T )− β(T ).

If T ∈ B(X) is both upper and lower semi-Fredholm then T is said to

be a Fredholm operator. An operator T ∈ B(X) is called a Weyl operator if

it is a Fredholm operator of index zero. The Weyl spectrum of T is de�ned

by σW (T ) = {λ ∈ C : T − λI is not Weyl}.

2020 Mathematics Subject Classi�cation: 47A10, 47A11, 47A53
Key words and phrases: Weyl's theorem, generalized Weyl's theorem, generalized
a-Browder's theorem, SVEP, property (Bgw), property (Bgw1)
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Denote by USF−(X) the class of all upper semi B-Fredholm operators

with an index less than or equal to 0. Set σusf−(T ) = {λ ∈ C : T − λI /∈
USF−(X)}.

For a bounded linear operator T ∈ B(X) and a nonnegative integer n,

we de�ne Tn to be the restriction of T to R(Tn) viewed as a map from R(Tn)

into itself (in particular T0 = T ). If for some integer n, the range space

R(Tn) is closed and Tn is an upper (resp., a lower) semi-Fredholm operator,

then T is called an upper (resp., a lower) semi B-Fredholm operator. A

semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator.

From [8, Proposition 2.1], if Tn is a semi-Fredholm operator then Tm is

also a semi-Fredholm operator for each m ≥ n and ind(Tm) = ind(Tn).

Thus, the index of a semi-B-Fredholm operator T is de�ned as the index

of the semi-Fredholm operator Tn (see [7, 8]). An operator T ∈ B(X) is

called a B-Weyl operator if it is a B-Fredholm operator of index 0. The

B-Weyl spectrum σBW (T ) of T is de�ned as σBW (T ) = {λ ∈ C : T −
λI is not a B-Weyl operator}. Let USBF−(X) be the class of all upper

semi-B-Fredholm operators with an index less than or equal to 0. The upper

B-Weyl spectrum of T is de�ned by σusbf−(T ) = {λ ∈ C : T − λI /∈
USBF−(X)}.

Let p(T ) := asc(T ) be the ascent of an operator T i.e., the smallest

nonnegative integer n such that N(Tn) = N(Tn+1). If such an integer

does not exist we set asc(T ) = ∞. Analogously, let q(T ) := dsc(T ) be the

descent of an operator T i.e. the smallest nonnegative integer such that

R(Tn) = R(Tn+1) and if such an integer does not exist we set dsc(T ) =∞.

It is well known that if p(T ) and q(T ) are both �nite then p(T ) = q(T ).

An operator T is called Drazin invertible if it has �nite ascent and descent.

The Drazin spectrum of T is de�ned by σD(T ) = {λ ∈ C : T − λI is not

Drazin invertible} . We observe σD(T ) = σ(T ) \ π(T ), where π(T ) is the

set of poles of T .

An operator T ∈ B(X) is called an upper semi-Browder if it is an upper

semi-Fredholm of �nite ascent and is called Browder if it is a Fredholm of

�nite ascent and descent. The Browder spectrum of T is de�ned by σb(T ) =

{λ ∈ C : T − λI is not Browder}. De�ne the set LD(X) as LD(X) =

{T ∈ B(X) : α(T ) < ∞ and is R(Tα(T )+1 closed} and σLD(T ) = {λ ∈ C :

T−λI /∈ LD(X)}. An operator T ∈ B(X) is said to be left Drazin invertible

if T ∈ LD(X). We say that λ ∈ σa(T ) is a left pole of T if T −λI ∈ LD(X)
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and that λ ∈ σa(T ) is a left pole of T of �nite rank if λ is a left pole of T

and α(T − λI) <∞.

We recall the list of all symbols and notations we use:

E(T ) : eigenvalues of T that are isolated in the spectrum σ(T ),

E0(T ) : eigenvalues of T of �nite multiplicity that are isolated in the

spectrum σ(T ),

Ea(T ) : eigenvalues of T that are isolated in approximate point

spectrum σa(T ),

Ea
0 (T ) : eigenvalues of T of �nite multiplicity that are isolated in

σa(T ),

π(T ) : poles of T ,

π0(T ) : poles of T of �nite rank,

πa(T ) : left poles of T ,

πa
0(T ) : left poles of T of �nite rank,

σBW (T ) : B-Weyl Spectrum of T ,

σW (T ) : Weyl Spectrum of T ,

σusbf−(T ) : upper semi-B-Weyl spectrum of T ,

σusf−(T ) : upper semi-Weyl spectrum of T .

Following Coburn [10], we say that Weyl's theorem holds for T ∈ B(X)

if σ(T )\σW (T ) = E0(T ). According to Rako£evi¢ [17], an operator T ∈
B(X) is said to satisfy a-Weyl's theorem if σa(T )\σusf−(T ) = Ea

0 (T ).

Following [7], we say that generalized a-Browder's theorem holds for T

if σa(T )\σusbf−(T ) = πa(T ) and that a-Browder's theorem holds for T if

σa(T )\σusf−(T ) = πa
0(T ). It is proved in [3, Theorem 2.2] that generalized

a-Browder's theorem is equivalent to a-Browder's theorem.

Given T ∈ B(X), we say that generalized Browder's theorem holds

for T if σ(T )\σBW (T ) = π(T ), and that Browder's theorem holds for T

if σ(T )\σW (T ) = π0(T ). It is proved in [3, Theorem 2.1] that generalized

Browder's theorem is equivalent to Browder's theorem.

We say that T obeys generalized a-Weyl theorem if σa(T )\σusbf−(T ) =
Ea(T ), and that generalized Weyl's theorem holds for T if σ(T )\σBW (T ) =

E(T ) [7, De�nition 2.13]. Generalized a-Weyl's theorem has been studied in

[3]. In [7, Theorem 3.11], it is shown that an operator satisfying generalized
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a-Weyl's theorem satis�es a-Weyl's theorem. Generalized Weyl's theorem

has been studied in [2, 4, 5, 6, 7, 8] and the references therein. Berkani and

Koliha [7] proved that generalized Weyl's theorem ⇒ Weyl's theorem.

2. Property (Bgw1)

We will say that an operator T ∈ B(X) has single valued extension

property at λ0 ∈ C (abbreviated SVEP at λ0 ∈ C) if for every open disc

U of λ0 the only analytic function f : U → X which satis�es the equation

(T−λI)f(λ) = 0 for all λ ∈ U , is the function f ≡ 0. An operator T ∈ B(X)

is said to have SVEP if T has SVEP at every point λ ∈ C (see [15]). Every

operator T has SVEP at an isolated point of the spectrum.

According to Duggal [12, Proposition 3.10], the following statements are

equivalent.

(i) T satis�es generalized a-Browder's theorem,

(ii) T has SVEP at points λ /∈ σusbf−(T ).

According to [19, De�nition 2.1], an operator T ∈ B(X) is said to satisfy

property (Bgw) if σa(T )\σusbf−(T ) = E0(T ). We now give a de�nition of

property (Bgw1) for a bounded linear operator of T as an extension of

property (Bgw).

De�nition 2.1. T ∈ B(X) is said to satisfy property (Bgw1) if

σa(T )\σusbf−(T ) ⊂ E0(T ).

The property has been introduced in [16, De�nition 2.10] as property

(SBw1). In this section, we establish the necessary and su�cient conditions

for which the property (Bgw1) holds. We prove that T satis�es property

(Bgw1) if and only if generalized a-Browder's theorem holds for T and

πa(T ) ⊂ E0(T ).

We start by giving a relationship between property (Bgw) and property

(Bgw1):

Theorem 2.2. Property (Bgw) holds for T if and only if T satis�es property

(Bgw1) and σusbf−(T ) ∩ E0(T ) = ∅.

Proof. Suppose that T satis�es property (Bgw), then property (Bgw1) holds

for T and σusbf−(T ) ∩ E0(T ) = ∅. For the converse, suppose T satis�es

property (Bgw1) and if λ ∈ E0(T ), λ /∈ σusbf−(T ) since σusbf−(T )∩E0(T ) =

∅. Thus λ ∈ σa(T )\σusbf−(T ). Hence E0(T ) ⊆ σa(T )\σusbf−(T ). □



138 NEERU KASHYAP (SHARMA)

From Theorem 2.2, we observe that property (Bgw) implies property

(Bgw1). However, the converse of this implication does not hold in general,

as we can see in the following example.

Example 2.3. Let T be the weighted unilateral shift de�ned by

T (x1, x2, x3, . . .) =

(
1

2
x2,

1

3
x3, . . .

)
, for all (x1, x2, . . . ) ∈ l2(N). Then

σa(T ) = σusbf−(T ) = {0}. However, E0(T ) = {0}. Thus σa(T )\ σusbf−(T ) =
∅ ⊂ E0(T ), T satis�es property (Bgw1) but not property (Bgw). Further-

more, property (Bgw1) does not imply that σusbf−(T ) ∩ E0(T ) = ∅. As in
this example property (Bgw1) holds for T but σusbf−(T ) ∩ E0(T ) = {0}.

The next result gives the relationship between property (Bgw1) and

generalized a-Browder's theorem. Here σiso
a (T ) is the set of points which

are isolated in σa(T ).

Theorem 2.4. If T ∈ B(X) satis�es property (Bgw1). Then generalized

a-Browder's theorem holds for T and σa(T ) = σusbf−(T ) ∪ σiso
a (T ).

Proof. By [12, Proposition 3.10], it is su�cient to prove that T has SVEP

at every λ /∈ σusbf−(T ). Let us assume that λ /∈ σusbf−(T ).

Case (i): If λ /∈ σa(T ) then T has SVEP at λ.

Case (ii): If λ ∈ σa(T ) and suppose that T satis�es property (Bgw1) then

λ ∈ σa(T )\σusbf−(T ) ⊂ E0(T ).

Hence, λ ∈ σiso(T ), so, in this case, T has SVEP at λ.

To prove σa(T ) = σusbf−(T ) ∪ σiso
a (T ), we observe that σusbf−(T ) ∪

σiso
a (T ) ⊆ σa(T ) for every T ∈ B(X). For the reverse inclusion, consider

λ ∈ σa(T ). If λ /∈ σusbf−(T ) then λ ∈ σa(T )\σusbf−(T ). As T satis�es

property (Bgw1), therefore λ ∈ E0(T ). Thus λ ∈ σiso
a (T ). Thus σa(T ) ⊆

σusbf−(T ) ∪ σiso
a (T ). Therefore σa(T ) = σusbf−(T ) ∪ σiso

a (T ). □

In the next theorem, we give a characterization of property (Bgw1):

Theorem 2.5. If T ∈ B(X), then the following statements are equivalent:

(i) T satis�es property (Bgw1),

(ii) generalized a-Browder's theorem holds for T and πa(T ) ⊂ E0(T ).



PROPERTY (Bgw1) AND WEYL TYPE THEOREMS 139

Proof. (i)⇒(ii) Assume that T satis�es property (Bgw1). By Theorem 2.4 it

is su�cient to prove that πa(T ) ⊂ E0(T ). Let λ ∈ πa(T ) = σa(T )\σusbf−(T )
⊂ E0(T ).

(ii)⇒(i). If λ ∈ σa(T )\σusbf−(T ). Then generalized a-Browder's theorem

implies that λ ∈ πa(T ) ⊂ E0(T ). Thus σa(T )\σusbf−(T ) ⊂ E0(T ). □

Theorem 2.6. Let T ∈ B(X). If T has SVEP at points in σa(T )\σusbf−(T ),
then T satis�es property (Bgw1) if and only if πa(T ) ⊂ E0(T ).

Proof. The hypothesis that T has SVEP at σa(T )\σusbf−(T ) implies that

T satis�es generalized a-Browder's theorem [12, Proposition 3.10].

Hence if πa(T ) ⊂ E0(T ) then σa(T )\σusbf−(T ) = πa(T ) ⊂ E0(T ). □

Operators S, T ∈ B(X) are said to be injectively interwined, denoted,

S ≺i T , if there exists an injection U ∈ B(X) such that TU = US. If

S ≺i T , then T has SVEP at a point λ implies S has SVEP at λ. To see

this, let T have SVEP at λ, let U be an open neighbourhood of λ and let

f : U → X be an analytic function such that (S − µ)f(µ) = 0 for every

µ ∈ U . Then U(S − µ)f(µ) = (T − µ)Uf(µ) = 0⇒ Uf(µ) = 0. Since U is

injective, f(µ) = 0, i.e., S has SVEP at λ.

Theorem 2.7. Let S, T ∈ B(X). If T has SVEP and S ≺i T , then property

(Bgw1) holds for S if and only if πa(S) ⊂ E0(S).

Proof. Suppose that T has SVEP. Since S ≺i T , S has SVEP. Hence the

result follows from Theorem 2.6. □

Recall from [19], that if T ∈ B(X) and s ∈ N, then T has uniform

decent for n ≥ s if R(T ) + ker(Tn) = R(T ) + ker(T s) for all n ≥ s. If in

addition R(T )+ker(T s) is closed then T is said to have topological descent

for n ≥ s.

Also recall that T ∈ B(X) is said to satisfy property (Bw1) if

σ(T )\σBW (T ) ⊂ E0(T ) [14, De�nition 2.2]. The next result gives a rela-

tionship between property (Bgw1) and property (Bw1).

Theorem 2.8. If T satis�es property (Bgw1), then it satis�es property

(Bw1).

Proof. Suppose that T satis�es property (Bgw1) and λ ∈ σ(T )\σBW (T ).

Then T − λI is B-Weyl and T − λI is upper semi-B-Fredholm with index

zero. Thus λ /∈ σusbf−(T ).
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Let λ /∈ σa(T ). Since T − λI is an operator of topological uniform

descent, then there exists ε > 0 such that if 0 < |λ − µ| < ε, then we

have cn(T − λI) = c0(T − µI) and ćn(T − λI) = ć0(T − µI) for large

enough n. Since T − λI is B-Weyl, cn(T − λI) = ćn(T − λI). We have

ć0(T−λI) = 0, because λ /∈ σa(T ). Hence we have c0(T−λI) = ć0(T−λI) =
0. Consequently, λ /∈ σ(T ) which is a contradiction. Hence λ ∈ σa(T ). Since

T satis�es property (Bgw1), λ ∈ E0(T ). Thus T satis�es property (Bw1).

Recall that an operator T ∈ B(X) is said to satisfy property (gb) if

σa(T )\σusbf−(T ) = π(T ). The following result gives a relationship between

property (Bgw1) and (gb). □

Theorem 2.9. Let T ∈ B(X). Then the following statements are equiva-

lent.

(i) T satis�es property (Bgw1),

(ii) T satis�es property (gb) and π(T ) ⊂ E0(T ).

Proof. (i)=⇒(ii): Suppose T satis�es property (Bgw1). To prove that T

satis�es property (gb), by [20, Proposition 2.16] it is enough to show that

T has SVEP. Let λ ∈ σa(T )\σusbf−(T ). Since T satis�es property (Bgw1),

λ ∈ E0(T ). Hence λ ∈ isoσ(T ). Thus T has SVEP at λ.

Now we have to prove that π(T ) ⊂ E0(T ).

Suppose λ ∈ π(T ). Since T satis�es property (gb), λ ∈ σa(T )\σusbf−(T ).
Hence λ ∈ E0(T ) because T satis�es property (Bgw1).

(ii)=⇒(i): If λ ∈ σa(T )\σusbf−(T ), then λ ∈ π(T ) by hypothesis. Thus

λ ∈ E0(T ) and T satis�es property (Bgw1). □

3. Property (Bgw1) for Direct Sum

Let H and K be in�nite-dimensional Hilbert spaces and T and S are

two operators on H and K, respectively. In the following results, we present

su�cient conditions on T and S under which property (Bgw1) will be

transferred from the direct summands to the direct sum T ⊕ S.

Theorem 3.1. Suppose that T ∈ B(H) and S ∈ B(K) are such that

σ0
p(T ) ⊂ σa(S) and σ0

p(S) ⊂ σa(T ). If T and S both possess property

(Bgw1), then the following statements are equivalent.

(i) T ⊕ S possesses property (Bgw1);

(ii) σusbf−(T ⊕ S) = σusbf−(T ) ∪ σusbf−(S).
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Proof. (ii)=⇒(i): Assume that σusbf−(T⊕S) = σusbf−(T )∪σusbf−(S). Since
T and S both possess property (Bgw1)

σa(T ⊕ S)\σusbf−(T ⊕ S) = [σa(T ) ∪ σa(S)]\[σusbf−(T ) ∪ σusbf−(S)]

⊂ [E0(T ) ∩ ρa(S)] ∪ [ρa(T ) ∩ E0(S)] ∪ [E0(T ) ∩ E0(S)].

Since by hypothesis that σ0
p(T ) ⊂ σa(S) and σ0

p(S) ⊂ σa(T ), then E0(T ) ∩
ρa(S) = ∅ and E0(S) ∩ ρa(T ) = ∅. Therefore

σa(T ⊕ S)\σusbf−(T ⊕ S) = [σa(T ) ∪ σa(S)]\[σusbf−(T ) ∪ σusbf−(S)]

⊂ [E0(T ) ∩ E0(S)].

Since we know

σ0
p(T ⊕ S) = {λ ∈ σ0

p(T ) ∪ σ0
p(S) : dimN(λI − T ) + dimN(λI − S) <∞}.

Then

E0(T ⊕ S) = σiso(T ⊕ S) ∩ σ0
p(T ⊕ S)

= iso[σ(T ) ∪ σ(S)] ∩ [σ0
p(T ) ∪ σ0

p(S)], where iso[σ(T ) ∪ σ(S)]

denotes the isolated points of [σ(T ) ∪ σ(S)]

= [E0(T ) ∩ ρ(S)] ∪ [ρ(T ) ∩ E0(S)] ∪ [E0(T ) ∩ E0(S)]

= [E0(T ) ∩ E0(S)].

Since E0(T ) ∩ ρ(S) = ∅ and E0(S) ∩ ρ(T ) = ∅.

(i)=⇒(ii): If T ⊕ S possesses property (Bgw1), then from Theorem 2.4,

T ⊕ S satis�es generalized a-Browder's theorem. If T and S both possess

property (Bgw1), then T and S satisfy generalized a-Browder's theorem.

From [9, Theorem 2.8], we have σusbf−(T ⊕S) = σusbf−(T )∪σusbf−(S). □

Theorem 3.2. Suppose T ∈ B(H) is such that σiso
a (T ) = ∅, σ(T ) = σa(T )

and S ∈ B(K) satis�es property (Bgw1). If σusbf−(T ⊕ S) = σa(T ) ∪
σusbf−(S), then property (Bgw1) holds for T ⊕ S.

Proof. As σa(T ⊕ S) = σa(T ) ∪ σa(S) for any pair of operators, we have

σa(T ⊕ S)\σusbf−(T ⊕ S) = [σa(T ) ∪ σa(S)]\[σa(T ) ∪ σusbf−(S)]

= σa(S)\[σa(T ) ∪ σusbf−(S)]

= [σa(S)\σusbf−(S)]\σa(T )
⊂ E0(S) ∩ ρa(T ),

where ρa(T ) = C \ σa(T ).
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If σiso
a (T ) = ∅, it implies that σiso(T ) = ∅ and σ(T ) = σacc(T ), where

σacc(T ) = σ(T )\σiso(T ) is the set of all accumulation points of σ(T ). Thus

we have

σiso(T ⊕ S) = [σiso(T ) ∪ σiso(S)]\[(σiso(T ) ∩ σacc(S)) ∪ (σacc(T ) ∩ σiso(S))]

= (σiso(T )\σacc(S)) ∪ (σiso(S)\σacc(T ))

= σiso(S)\σa(T )

= σiso(S) ∩ ρa(T ).

Let σP (T ) denote the point spectrum of T and σPF (T ) denote the set of

all eigenvalues of T of �nite multiplicity.

We have that σP (T ⊕ S) = σP (T ) ∪ σP (S) and dimN(T ⊕ S) =

dimN(T ) + dimN(S) for every pair of operators, so that

σPF (T ⊕ S)

= {λ ∈ σPF (T ) ∪ σPF (S) : dimN(λI − T ) + dimN(λI − S) <∞}.

Therefore,

E0(T ⊕ S) = σiso(T ⊕ S) ∩ σPF (T ⊕ S)

= σiso(S) ∩ ρa(T ) ∩ σPF (S)

= E0(S) ∩ ρa(T ).

Thus, σa(T ⊕ S)\σusbf−(T ⊕ S) ⊆ Ea
0 (T ⊕ S). Hence, T ⊕ S satis�es the

property (Bgw1). □

Let σ1(T ) denote the compliment of σusbf−(T ) in σa(T ) i.e. σ1(T ) =

σa(T )\σusbf−(T ). A straight forward application of Theorem 3.2 leads to

the following corollaries.

Corollary 3.3. Suppose T ∈ B(H) is such that σiso
a (T ) = ∅, σ(T ) = σa(T )

and S ∈ B(K) satis�es property (Bgw1) with σiso(S) ∩ σPF (S) = ∅ and
σ1(T ⊕ S) = ∅, then T ⊕ S satis�es property (Bgw1).

Proof. Since S satis�es property (Bgw1), therefore given condition σiso(S)∩
σPF (S) = ∅ implies that σa(S) = σusbf−(S). Now σ1(T ⊕S) = ∅ gives that
σa(T ⊕ S) = σusbf−(T ⊕ S) = σa(T ) ∪ σusbf−(S). Thus, from Theorem 3.2,

we have that T ⊕ S satis�es property (Bgw1). □
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Corollary 3.4. Suppose T ∈ B(H) is such that σ1(T ) ∪ σiso
a (T ) = ∅,

σ(T ) = σa(T ) and S ∈ B(K) satis�es property (Bgw1). If σusbf−(T ⊕S) =

σusbf−(T ) ∪ σusbf−(S), then property (Bgw1) holds for T ⊕ S.

4. Property (Bgw) and Perturbations

In this section, we study the preservation of property (Bgw) under

perturbations by �nite rank and nilpotent operators.

Theorem 4.1. Let T ∈ B(X). If T has property (Bgw) and F is a �nite

rank operator in B(X) that commutes with T , then T + F has property

(Bgw) if and only if πa(T + F ) = E0(T + F ).

Proof. If T + F has property (Bgw), then πa(T + F ) = E0(T + F ). Con-

versely, suppose πa(T + F ) = E0(T + F ). Since F is a �nite rank operator

in B(X) that commutes with T , σusbf−(T ) = σusbf−(T +F ) and σLD(T ) =

σLD(T + F ) [7, Theorem 4.3]. As T satis�es generalized a-Browder's theo-

rem, σusbf−(T ) = σLD(T ). Now σa(T + F ) \ σusbf−(T + F ) = σa(T + F ) \
σLD(T +F ) = πa(T +F ) = E0(T +F ). Therefore, T +F satis�es property

(Bgw). □

Theorem 4.2. Let T ∈ B(X) and let N be a nilpotent operator commuting

with T . If T satis�es property (Bgw), then T +N satis�es property (Bgw)

if and only if σusbf−(T +N) = σusbf−(T ).

Proof. Assume that T + N satis�es property (Bgw), then σa(T + N) \
σusbf−(T+N) = E0(T+N). As σa(T+N) = σa(T ) and E0(T+N) = E0(T ).

Then, σa(T ) \ σusbf−(T + N) = E0(T ). Since T satis�es property (Bgw),

then σa(T ) \ σusbf−(T ) = E0(T ). Therefore σusbf−(T + N) = σusbf−(T ).

Conversely, assume that σusbf−(T + N) = σusbf−(T ), then as T satis�es

property (Bgw) it follows that T +N also satis�es property (Bgw). □

5. Conclusion

In conclusion, we provide a summary of the results obtained in this

paper. We use the abbreviations (Bgw), (Bgw1), (Bw1), (gb), W, gW, aW,

gaW to signify that an operator obeys property (Bgw), property (Bgw1),

property (Bw1), property (gb), Weyl's theorem, generalized Weyl's the-

orem, a-Weyl's theorem and generalized a-Weyl's theorem. Similarly, the

abbreviations B, aB, gB and gaB have analogous meanings concerning the

Browder's theorem.
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The following table summarizes the meaning of various theorems and

properties:

W σ(T )\σW (T ) = E0(T ) B σ(T )\σW (T ) = π0(T )

aW σa(T )\σusf−(T ) = Ea
0 (T ) aB σa(T )\σusf−(T ) = πa

0 (T )

gW σ(T )\σBW (T ) = E(T ) gB σ(T )\σBW (T ) = π(T )

gaW σa(T )\σusbf −(T ) = Ea(T ) gaB σa(T )\σusbf −(T ) = πa(T )

(Bgw) σa(T )\σusbf −(T ) = E0(T ) (gb) σa(T )\σusbf −(T ) = π(T )

(Bw1) σ(T )\σBW (T ) ⊂ E0(T ) (Bgw1) σa(T )\σusbf −(T ) ⊂ E0(T )

In the following diagram, arrows signify implications between the prop-

erties studied in this paper and other Weyl type theorems. The numbers

near the arrows are references to the results in the present paper (num-

bers without brackets) or to the bibliography therein (numbers in square

brackets)

(gb)x2.10

(Bgw)
2.2−−−→ (Bgw1)

2.9−−−→ (Bw1)y2.4

gW
[5]←−−− gaW

[5]−−−→ gaB
[5]−−−→ gBy[5]

y[5]

xy[3]

xy[3]

W
[14]←−−− aW

[5]−−−→ aB
[11]−−−→ B
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INTEGRALS VIA (η, l)-CONVEX FUNCTION

J. B. GAJERA AND R. K. JANA

(Received : 25 - 12 - 2023 ; Revised : 01 - 11 - 2024)

Abstract. The main goal of this paper is to establish a new integral

equality for the k-Riemann Liouville fractional operator. We present

a number of new inequalities for twice di�erentiable (η, l)-convex func-

tions that are related to the Hermite-Hadamard integral inequality and

generalise many previously obtained results.

1. Introduction

In the literature, the inequalities for convex functions discovered by C.

Hermite and J. Hadamard [9] are crucial. The following is a statement of

this inequality:

If g be a real valued convex function on interval I and ξ1, ξ2 ∈ R with

ξ1 < ξ2, then the Hermite-Hadamard inequality de�ned as follow

g

(
ξ1 + ξ2

2

)
≤ 1

ξ2 − ξ1

∫ ξ2

ξ1

g(z)dz ≤ g(ξ1) + g(ξ2)

2
. (1.1)

Mathematicians have recently focused on generalizing, improving, and

extending the Hermite-Hadamard inequality for various classes of convex

functions. Classical convex functions have been expanded and generalized

in di�erent ways, including λϕ-preinvex functions [2], s-convex [3], pseudo-

convex [7], MT-convex [11] and h-convex [15].

We will use (η, l)-convex function throughout the paper. (η, l)-convex

functions are a speci�c class of functions that exhibit convex-like properties

with additional parameters η and l. Understanding the properties of (η, l)-

convex functions is crucial as they o�er a more nuanced perspective on the

behavior of functions compared to traditional convex functions.

2010 Mathematics Subject Classi�cation: 11A41, 16N20
Key words and phrases: prime numbers, divisibility, ring

© Indian Mathematical Society, 2024 .
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The following is the de�nition of an (η, l)-convex function as introduced

by Mihesan in 1993:

De�nition 1.1. [8] The function g is real valued (η, l)-convex function on

the interval [0, θ], if for ξ1, ξ2 ∈ [0, θ] and ν ∈ (0, 1), the inequality given

below holds true

g(νξ1 + l(1− ν)ξ2) ≤ νηg(ξ1) + l(1− νη)g(ξ2),

where, η, l ∈ (0, 1].

Remark 1.2. From above de�nition:

• The (η, l)-convex function and the l-convex function coincide if and

only if η = 1.

• The (η, l)-convex function and the η-convex function in the second

sense coincide if and only if l = 1.

• The (η, l)-convex function and the convex function coincide if and

only if η = l = 1.

The Hermite-Hadamard inequality (1.1) is established for conformable

fractional integrals, fractional integrals, the classical integral, and more re-

cently, generalized fractional integrals. For further information and appli-

cations, refer to [1, 4, 13, 14, 17] and the references therein.

Fractional integrals involve generalizing the concept of integration to

non-integer orders, which is essential in various mathematical applications.

Inequalities related to fractional integrals provide insights into the behavior

of functions under fractional integration operators. We will use k-Riemann-

Liouville fractional integral throughout the paper.

In 2012, Mubeen and Habibullah [12] de�ned the k-Riemann-Liouville

fractional integral as follows :

De�nition 1.3. For k > 0 and g ∈ L1[c, d], the k-Riemann-Liouville frac-

tional integrals are introduced by Mubeen and Habibullah [12] which are as

follows,

(Iα,k
c+

g)(x) =
1

kΓk(α)

∫ x

c
(x− ξ)

α
k
−1g(ξ)dξ, x > c

and

(Iα,k
d− g)(x) =

1

kΓk(α)

∫ d

x
(ξ − x)

α
k
−1g(ξ)dξ, x < d.
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The aim of this paper is to investigate Hermite-Hadamard inequalities

for the k-Riemann-Liouville fractional integral using the (η, l)-convex func-

tion. This exploration of inequalities and (η, l)-convex functions serves as

a foundation for advanced mathematical analysis techniques. These con-

cepts o�er a framework for examining the behavior of functions within the

realm of fractional integrals, contributing signi�cantly to the advancement

of mathematical theories and their practical applications.

Now, we present essential inequalities and lemmas that are utilized

throughout the paper.

Theorem 1.4. If g1 ∈ Lλ[c, d] and g2 ∈ Lµ[c, d], then g1g2 ∈ L1[c, d] and

the integral form of the Hölder inequality [10] can be expressed as follows:∫ d

c
|g1(ξ)g2(ξ)|dξ ≤

(∫ d

c
|g1(ξ)|λdx

) 1
λ
(∫ d

c
|g2(ξ)|µdξ

) 1
µ
,

for λ, µ ∈ [1,∞] such that 1
λ +

1
µ = 1. The inequality become equality if |g1|λ

and |g2|µ are linearly independent in L1[c, d].

Theorem 1.5. [5] Let λ > 1 and 1
λ + 1

µ = 1. If g1, g1 :−→ R and if

|g1|λ, |g2|µ are integrable functions on interval [c, d], then Hölder �³can In-

tegral inequality is as follows:∫ d

c
|g1(ξ)g2(ξ)|dξ

≤ 1

d− c


(∫ d

c
(d− ξ)|g1(ξ)|λdξ

) 1
λ
(∫ d

c
(d− ξ)|g2(ξ)|µdξ

) 1
µ

+

(∫ d

c
(ξ − c)|g1(ξ)|λdξ

) 1
λ
(∫ d

c
(ξ − c)|g2(ξ)|µdξ

) 1
µ

 .

Theorem 1.6. [6] Let µ ≥ 1. If g1 and g2 are real valued functions de�ned

on [c, d] and if |f |, |f ||g|µ integrable functions on [c, d], then power-mean

integral inequality is as follows:∫ d

c
|g1(ξ)g2(ξ)|dx ≤

(∫ d

c
|g1(ξ)|dξ

)1− 1
µ
(∫ d

c
|g1(ξ)||g2(ξ)|qdξ

) 1
µ

.
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Lemma 1.7. [14] Let g be a real valued di�erential function on I, where

c, d ∈ I with 0 ≤ c ≤ d. If g′ ∈ L[c, d], then the equality given below is holds:

g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]
≤ k(ld− c)2

2(θ + k)

{∫ 1

0

(
1− (1− ξ)

θ
k
+1 − ξ

θ
k
+1

)
g′′(cξ + l(1− ξ)d)dξ

}
.

2. Main Result

Theorem 2.1. Let g be a di�erentiable function on I, where c, d ∈ I with

0 ≤ c ≤ d and g′′ ∈ L[c, d]. If |g′′| is (η, l) convex function and ℜ( θk ) >

0, θ ̸= 0, then the below-mentioned inequality holds true:∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

×
{
|g′′(c)|

(
1

η + 1
−B(η + 1,

θ

k
+ 2)− k

θ + ηk + 2k

)
+ l|g′′(d)|

(
θ

θ + 2k
− 1

η + 1
+B(η + 1,

θ

k
+ 2) +

k

θ + ηk + 2k

)}
= k1,

where η, l ∈ (0, 1].

Proof. By using lemma 1.7 and (η, l)-convexity of |g′′|, we get∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

{∫ 1

0

(
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

)
g′′(cτ + l(1− τ)d)dτ

}
≤ k(ld− c)2

2(θ + k)

{
|g′′(c)|

∫ 1

0

(
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

)
τηdτ

+ l|g′′(d)|
∫ 1

0

(
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

)
(1− τη)dτ

}
.

By evaluating integration, we get the required inequality. □
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Corollary 2.2. By substituting η = 1 in Theorem 2.1, we get the result

for the l-convex function:∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

{
|g′′(c)|

(
1

2
−B(2,

θ

k
+ 2)− k

θ + 3k

)
+ l|g′′(d)|

(
θ

θ + 2k
− 1

2
+B(2,

θ

k
+ 2) +

k

θ + 3k

)}
.

Corollary 2.3. By substituting l = 1 in Theorem 2.1, we obtain the result

for the η-convex function:∣∣∣∣∣g(c) + g(d)

2
− Γk(θ + k)

2(d− c)
θ
k

[
Iθ,k
c+

g(d) + Iθ,k
d− f(c)

]∣∣∣∣∣
≤ k(d− c)2

2(θ + k)

×
{
|g′′(c)|

(
1

η + 1
−B(η + 1,

θ

k
+ 2)− k

θ + ηk + 2k

)
+ |g′′(d)|

(
θ

θ + 2k
− 1

η + 1
+B(η + 1,

θ

k
+ 2) +

k

θ + ηk + 2k

)}
.

Theorem 2.4. Let g be a twice di�erentiable function on I, where c, d ∈ I

with 0 ≤ c ≤ d and g′′ ∈ L[c, d]. If |g′′|µ, λ, µ ≥ 1, 1
λ + 1

µ = 1 is (η, l)-convex

function and ℜ( θk ) > 0, θ ̸= 0, then the inequality given below holds:∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

(
1− 2k

λ(θ + k) + k

) 1
λ
(

1

η + 1

) 1
µ (

|g′′(c)|µ + lη|g′′(d)|µ
) 1

µ

= k2,

where (η, l) ∈ (0, 1]× (0, 1].

Proof. From Lemma 1.7, using (η, l)-convexity of |f ′′|q and Hölder inequal-

ity (Theorem 1.4), we obtain
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∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

{∫ 1

0

(
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

)
g′′(cτ + l(1− τ)d)dτ

}

≤ k(ld− c)2

2(θ + k)

(∫ 1

0
1− (1− τ)λ(

θ
k
+1) − τλ(

θ
k
+1)dτ

) 1
λ

×
(∫ 1

0
|g′′(cτ + l(1− τ)d)|µdτ

) 1
µ

≤ k(ld− c)2

2(θ + k)

(
1− 2k

λ(θ + k) + k

) 1
λ
(

1

η + 1

) 1
µ (

|g′′(c)|µ + lη|g′′(d)|µ
) 1

µ .

□

Corollary 2.5. By substituting η = 1 in Theorem 2.4, we get the result

for the l-convex function:∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

(
1− 2k

λ(θ + k) + k

) 1
λ
(
1

2

) 1
µ (

|g′′(c)|µ + l|g′′(d)|µ
) 1

µ .

Corollary 2.6. By substituting l = 1 in Theorem 2.4, we get the result for

the η-convex function:∣∣∣∣∣g(c) + g(d)

2
− Γk(θ + k)

2(d− c)
θ
k

[
Iθ,k
c+

g(d) + Iθ,k
d− g(c)

]∣∣∣∣∣
≤ k(d− c)2

2(θ + k)

(
1− 2k

λ(θ + k) + k

) 1
λ
(

1

η + 1

) 1
µ (

|g′′(c)|µ + η|g′′(d)|µ
) 1

µ .

Remark 2.7. By putting k = 1 in Theorem 2.4, we get Theorem 3.4 of

[16].

Theorem 2.8. Let g be a twice di�erentiable function on I, where c, d ∈ I

with 0 ≤ c ≤ d and g′′ ∈ L[c, d]. If |g′′|µ, λ, µ ≥ 1, 1
λ + 1

µ = 1 is (η, l)-convex
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function and ℜ( θk ) > 0, θ ̸= 0, then the inequality given below holds:∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

{
|g′′(c)|µI1 + l|g′′(d)|qI2

} 1
µ

= k3,

where (η, l) ∈ (0, 1]× (0, 1].

I1 =
1

η + 1
−B

(
η + 1,

(
θ

k
+ 1

)
q + 1

)
− 1(

θ
k + 1

)
q + η + 1

and

I2 =
η

η + 1
− 2(

θ
k + 1

)
q + 1

+B

(
η + 1,

(
θ

k
+ 1

)
µ+ 1

)
+

1(
θ
k + 1

)
µ+ η + 1

.

Proof. From Lemma 1.7, using (η, l)-convexity of |f ′′|µ and Hölder inequal-

ity (Theorem 1.4), we obtain

∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

(∫ 1

0
1dτ

) 1
λ

×
{∫ 1

0

(
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

)µ
|g′′(cτ + l(1− τ)d)|µdτ

} 1
µ

≤ k(ld− c)2

2(θ + k)

×
{∫ 1

0

(
1− (1− τ)(

θ
k
+1)µ − τ(

θ
k
+1)µ

) (
τη|g′′(c)|µ + l(1− τη)|g′′(d)|µ)

)
dτ

} 1
µ

≤ k(ld− c)2

2(θ + k)

×
{
|g′′(c)|µ

(∫ 1

0
τη − τη(1− τ)(

θ
k
+1)µ − τ(

θ
k
+1)µ+ηdτ

)

+ l|g′′(d)|µ
(∫ 1

0
(1− τη)− (1− τη)(1− τ)(

θ
k
+1)µ − (1− τη)τ(

θ
k
+1)µdτ

)} 1
µ

≤ k(lb− a)2

2(θ + k)

{
|g′′(c)|µI1 + l|g′′(d)|µI2

} 1
µ .
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□

Corollary 2.9. By substituting η = 1 in Theorem 2.8, we get the result

for the l-convex function:∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

{
|g′′(c)|µI3 + l|g′′(d)|µI4

} 1
µ .

I3 =
1

2
−B

(
2,

(
θ

k
+ 1

)
µ+ 1

)
− 1(

θ
k + 1

)
µ+ 2

and

I4 =
1

2
−B

(
2,

(
θ

k
+ 1

)
µ+ 1

)
− 1(

θ
k + 1

)
µ+ 2

.

Corollary 2.10. By substituting l = 1 in Theorem 2.8, we get the result

for the η-convex function:∣∣∣∣∣g(c) + g(d)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(d) + Iθ,k
d− g(c)

]∣∣∣∣∣
≤ k(d− c)2

2(θ + k)

{
|g′′(c)|µI5 + |g′′(d)|µI6

} 1
µ .

I5 =
1

2
−B

(
2,

(
θ

k
+ 1

)
µ+ 1

)
− 1(

θ
k + 1

)
µ+ 2

and

I6 =
η

η + 1
− 2(

θ
k + 1

)
µ+ 1

+B

(
η + 1,

(
θ

k
+ 1

)
µ+ 1

)
+

1(
θ
k + 1

)
µ+ η + 1

.

Remark 2.11. By putting k = 1 in Theorem 2.8, we get Theorem 3.6 of

[16].

Theorem 2.12. Let g be a twice di�erentiable function on I, where c, d ∈ I

with 0 ≤ c ≤ d and g′′ ∈ L[c, d]. If |g′′|µ, µ > 1 is (η, l)-convex function and

ℜ( θk ) > 0, θ ̸= 0, then the inequality given below holds:
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∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

(
θ

θ + 2k

)1− 1
µ

×A

= k4,

where

A =

{(
1

η + 1

)(
|g′′(c)|µ + lη|g′′(d)|µ

)
−
(

2k

θ + 2k

)
l|g′′(d)|µ

−
(
|g′′(c)|µ − l|g′′(d)|µ

) [
B

(
η + 1,

θ

k
+ 2

)
+

k

θk + ηk + 2

]} 1
µ

and (η, l) ∈ (0, 1]× (0, 1].

Proof. From Lemma 1.7, using Power mean inequality (Theorem 1.6) and

(η, l)-convexity of |f ′′|µ, we get

∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

{∫ 1

0

(
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

)
g′′(cτ + l(1− τ)d)dτ

}
.

∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

(∫ 1

0

[
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

]
dt

)1− 1
µ

×
(∫ 1

0

(
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

)
|g′′(cτ + l(1− τ)d)|µdτ

) 1
µ

.

(2.1)

Now, by solving the �rst integration of the above inequality, we get∫ 1

0

[
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

]
dτ =

θ

θ + 2k
. (2.2)
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Now, by solving the second integration of the above inequality, we get∫ 1

0

(
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

)
|g′′(cτ + l(1− τ)d)|µdτ

=

(
1

η + 1

)(
|g′′(c)|µ + lη|g′′(d)|µ

)
−
(

2k

θ + 2k

)
l|g′′(d)|µ

−
(
|g′′(c)|µ − l|g′′(d)|µ

) [
B

(
η + 1,

θ

k
+ 2

)
+

k

θk + ηk + 2

]
.

(2.3)

By substituting values of integration from (2.2), (2.3) in (2.1), we get the

required inequality. □

Corollary 2.13. By substituting η = 1 in Theorem 2.12, we get the result

for the l-convex function:∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

(
θ

θ + 2k

)1− 1
µ

×
{
|g′′(c)|µ + l|g′′(d)|µ

2
−
(

2k

θ + 2k

)
l|g′′(d)|µ

−
(
|g′′(c)|µ − l|g′′(d)|µ

) [
B

(
2,

θ

k
+ 2

)
+

k

θk + k + 2

]} 1
µ

.

Corollary 2.14. By substituting l = 1 in Theorem 2.12, we get the result

for the η-convex function:

∣∣∣∣∣g(c) + g(d)

2
− Γk(θ + k)

2(d− c)
θ
k

[
Iθ,k
c+

g(d) + Iθ,k
d− g(c)

]∣∣∣∣∣
≤ k(d− c)2

2(θ + k)

(
θ

θ + 2k

)1− 1
µ

×
{(

1

η + 1

)(
|g′′(c)|µ + η|g′′(d)|µ

)
−
(

2k

θ + 2k

)
|f ′′(d)|µ

−
(
|g′′(c)|µ − |g′′(d)|µ

) [
B

(
η + 1,

θ

k
+ 2

)
+

k

θk + ηk + 2

]} 1
µ

.

Remark 2.15. By putting k = 1 in Theorem 2.12, we get Theorem 3.2 of

[16].
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Theorem 2.16. Let f be a twice di�erentiable mapping on I, where c, d ∈ I

with 0 ≤ c ≤ d and g′′ ∈ L[c, d]. If |g′′|µ, λ > 1, 1
λ + 1

µ = 1 is (η, l)-convex

function with (η, l) ∈ (0, 1] × (0, 1] and ℜ( θk ) > 0, θ ̸= 0,then the inequality

given below holds:

∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

(
1

2
−B

(
λ

(
θ

k
+ 1

)
+ 1, 2

)
− k

λ (θ + k) + 2k

) 1
λ

×

{(
|g′′(c)|µB(η + 1, 2) + |g′′(dl)|µ

[
1

2
− 1

(η + 1)(η + 2)

]) 1
µ

+

((
|g′′(c)|µ − l|g′′(d)|µ

)( 1

η + 2

)
+

l|g′′(d)|µ

2

) 1
µ

}
= k5.

Proof. From Lemma 1.7, using Hölder �³can Integral inequality (Theorem

1.5) and (η, l)-convexity of |f ′′|µ, we obtain

∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
bl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)
(I7)

1
λ (I8)

1
µ + (I9)

1
λ (I10)

1
µ (2.4)

≤ k(ld− c)2

2(θ + k)

(
1

2
−B

(
λ

(
θ

k
+ 1

)
+ 1, 2

)
− k

λ (θ + k) + 2k

) 1
λ

×

{(∫ 1

0
(1− τ)

[
τη|g′′(c)|µ + (1− τη)l|g′′(d)|µ

]
dτ

) 1
µ

+

(∫ 1

0
τ
[
τη|g′′(c)|µ + (1− τη)l|g′′(d)|µ

]
dτ

) 1
µ

}
, (2.5)

where

I7 =

∫ 1

0
(1− τ)

[
1− (1− τ)λ(

θ
k
+1) − τλ(

θ
k
+1)

]
dτ,

I8 =

∫ 1

0
(1− τ)|g′′(cτ + l(1− τ)d)|µdτ,
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I9 =

∫ 1

0
τ
[
1− (1− τ)

θ
k
+1 − τ

θ
k
+1

]
dτ

and

I10 =

∫ 1

0
τ |g′′(cτ + l(1− τ)d)|µdτ.

Now, by evaluating integrals, we get

∫ 1

0
(1− τ)

[
τη|τ ′′(c)|µ + (1− τη)l|g′′(d)|µ

]
dτ

= |g′′(c)|µB(η + 1, 2) + l|g′′(d)|µ
(
1

2
− 1

(η + 1)(η + 2)

)
.

(2.6)

∫ 1

0
τ
[
τη|g′′(c)|µ + (1− τη)|g′′(ld)|µ

]
dτ

=
(
|g′′(c)|µ − l|g′′(d)|µ

)( 1

η + 2

)
+

l|g′′(d)|µ

2
. (2.7)

Now, by using the values of the integrals of (2.6) and (2.7) in (2.4), we

get the required inequality. □

Corollary 2.17. By substituting η = 1 in Theorem 2.16, we get the result

for the l-convex function:∣∣∣∣∣g(c) + g(dl)

2
− Γk(θ + k)

2(ld− c)
θ
k

[
Iθ,k
c+

g(ld) + Iθ,k
dl−g(c)

]∣∣∣∣∣
≤ k(ld− c)2

2(θ + k)

(
1

2
−B

(
λ

(
θ

k
+ 1

)
+ 1, 2

)
− k

λ (θ + k) + 2k

) 1
λ

×

{(
|g′′(c)|µ

6
+

|g′′(dl)|µ

3

) 1
µ

+

(
|g′′(c)|µ

3
+

l|g′′(d)|µ

6

) 1
µ

}
.

Corollary 2.18. By substituting l = 1 in Theorem 2.16, we get the result

for the η-convex function:∣∣∣∣∣g(c) + g(d)

2
− Γk(θ + k)

2(d− c)
θ
k

[
Iθ,k
c+

g(d) + Iθ,k
d− g(c)

]∣∣∣∣∣
≤ k(d− c)2

2(θ + k)

(
1

2
−B

(
λ

(
θ

k
+ 1

)
+ 1, 2

)
− k

λ (θ + k) + 2k

) 1
λ

×B.
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